Efficient culture adaptation of hepatitis C virus recombinants with genotype-specific core-NS2 by using previously identified mutations.

Journal of virology(2010)

引用 72|浏览15
暂无评分
摘要
Hepatitis C virus (HCV) is an important cause of chronic liver disease, and interferon-based therapy cures only 40 to 80% of patients, depending on HCV genotype. Research was accelerated by genotype 2a (strain JFH1) infectious cell culture systems. We previously developed viable JFH1-based recombinants encoding the structural proteins (core, E1, E2), p7, and NS2 of prototype isolates of the seven major HCV genotypes; most recombinants required adaptive mutations. To enable genotype-, subtype-, and isolate-specific studies, we developed efficient core-NS2 recombinants from additional genotype 1a (HC-TN and DH6), 1b (DH1 and DH5), and 3a (DBN) isolates, using previously identified adaptive mutations. Introduction of mutations from isolates of the same subtype either led to immediate efficient virus production or accelerated culture adaptation. The DH6 and DH5 recombinants without introduced mutations did not adapt to culture. Universal adaptive effects of mutations in NS3 (Q1247L, I1312V, K1398Q, R1408W, and Q1496L) and NS5A (V2418L) were investigated for JFH1-based genotype 1 to 5 core-NS2 recombinants; several mutations conferred adaptation to H77C (1a), J4 (1b), S52 (3a), and SA13 (5a) but not to ED43 (4a). The mutations permitting robust virus production in Huh7.5 cells had no apparent effect on viral replication but allowed efficient assembly of intracellular infectious HCV for adapted novel or previously developed recombinants. In conclusion, previously identified mutations permitted development of novel HCV core-NS2 genotype recombinants. Mutations adapting several recombinants to culture were identified, but no mutations were universally adaptive across genotypes. This work provides tools for analysis of HCV genotype specificity and may promote the understanding of genotype-specific patterns in HCV disease and control.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要