HDAC3-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity

Journal of Biological Chemistry(2011)

引用 51|浏览6
暂无评分
摘要
Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, PCAF, associate with cardiac sarcomeres, and a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study, we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to the A band of sarcomeres and was capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac alpha- and beta-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the K-m for the actin-activated ATPase activity of both alpha- and beta-MHC isoforms. By an in vitro motility assay, we found that lysine acetylation increased the actin sliding velocity of alpha-myosin by 20% and beta-myosin by 36%, compared to their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli, independent of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms.
更多
查看译文
关键词
Cardiac Hypertrophy,Histone Acetylase,Histone Deacetylase,Myosin,Signal Transduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要