Combination of Ecg Parameters with Support Vector Machines for the Detection of Life-Threatening Arrhythmias
2012 COMPUTING IN CARDIOLOGY (CINC), VOL 39(2012)
Key words
Hilbert transforms,electrocardiography,medical disorders,medical signal processing,patient treatment,phase space methods,support vector machines,A2,CM,CUDB,ECG parameters,FM,HILB,Hilbert transform,MAV,MEA,MITDB,PSR,STE,SVM,TCI,VF filter,VFleak,binary detection scenarios,complexity measurement,complexity parameters,defibrillation therapy,detection algorithms,early detection,fast ventricular tachycardia,life-threatening arrhythmia detection,mean absolute value,median frequency,modified exponential,nonVF rhythms,nonshockable arrhythmias,phase space reconstruction,spectral algorithm,standard exponential,support vector machines,threshold crossing interval,ventricular fibrillation
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined