Graphics Processor Unit (GPU) Accelerated Shallow Transparent Layer Detection in Optical Coherence Tomographic (OCT) Images for Real-Time Corneal Surgical Guidance.

Lecture Notes in Computer Science(2014)

引用 3|浏览8
暂无评分
摘要
An image analysis algorithm is described that utilizes a Graphics Processor Unit (GPU) to detect in real-time the most shallow subsurface tissue layer present in an OCT image obtained by a prototype SDOCT corneal imaging system. The system has a scanning depth range of 6mm and can acquire 15 volumes per second at the cost of lower resolution and signal-to-noise ratio (SNR) than diagnostic OCT scanners. To the best of our knowledge, we are the first to experiment with non-median percentile filtering for simultaneous noise reduction and feature enhancement in OCT images, and we believe we are the first to implement any form of non-median percentile filtering on a GPU. The algorithm was applied to five different test images. On an average, it took similar to 0.5 milliseconds to preprocess an image with a 20th-percentile filter, and similar to 1.7 milliseconds for our second-stage algorithm to detect the faintly imaged transparent surface.
更多
查看译文
关键词
OCT,image-guidance,real-time,GPU,percentile filter,surface detection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要