Code-pointer integrity

OSDI(2014)

引用 72|浏览267
暂无评分
摘要
Systems code is often written in low-level languages like C/C++, which offer many benefits but also delegate memory management to programmers. This invites memory safety bugs that attackers can exploit to divert control flow and compromise the system. Deployed defense mechanisms (e.g., ASLR, DEP) are incomplete, and stronger defense mechanisms (e.g., CFI) often have high overhead and limited guarantees [19, 15, 9]. We introduce code-pointer integrity (CPI), a new design point that guarantees the integrity of all code pointers in a program (e.g., function pointers, saved return addresses) and thereby prevents all control-flow hijack attacks, including return-oriented programming. We also introduce code-pointer separation (CPS), a relaxation of CPI with better performance properties. CPI and CPS offer substantially better security-to-overhead ratios than the state of the art, they are practical (we protect a complete FreeBSD system and over 100 packages like apache and postgresql), effective (prevent all attacks in the RIPE benchmark), and efficient: on SPEC CPU2006, CPS averages 1.2% overhead for C and 1.9% for C/C++, while CPI's overhead is 2.9% for C and 8.4% for C/C++. A prototype implementation of CPI and CPS can be obtained from http://levee.epfl.ch.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要