Dynamic Message Processing and Transactional Memory in the Actor Model.

DAIS(2015)

引用 5|浏览66
暂无评分
摘要
With the trend of ever growing data centers and scaling core counts, simple programming models for efficient distributed and concurrent programming are required. One of the successful principles for scalable computing is the actor model, which is based on message passing. Actors are objects that hold local state that can only be modified by the exchange of messages. To avoid typical concurrency hazards, each actor processes messages sequentially. However, this limits the scalability of the model. We have shown in former work that concurrent message processing can be implemented with the help of transactional memory, ensuring sequential processing, when required. This approach is advantageous in low contention phases, however, does not scale for high contention phases. In this paper we introduce a combination of dynamic resource allocation and non-transactional message processing to overcome this limitation. This allows for efficient resource utilization as these two mechanisms can be handled in parallel. We show that we can substantially reduce the execution time of high-contention workloads in a micro-benchmark as well as in a real-world application.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要