Cross-Layer Provision of Future Cellular Networks: A WMMSE-based approach

Signal Processing Magazine, IEEE  (2014)

引用 40|浏览77
暂无评分
摘要
To cope with the growing demand for wireless data and to extend service coverage, future fifth-generation (5G) networks will increasingly rely on the use of low-power nodes to support massive connectivity in a diverse set of applications and services. To this end, virtualized and mass-scale cloud architectures are proposed as promising technologies for 5G in which all the nodes are connected via a backhaul network and managed centrally by such cloud centers. The significant computing power made available by the cloud technologies has enabled the implementation of sophisticated signal processing algorithms, especially by way of parallel processing, for both interference management and network provision. The latter two are among the major signal processing tasks for 5G due to an increased level of frequency sharing, node density, interference, and network congestion. This article outlines several theoretical and practical aspects of joint interference management and network provisioning for future 5G networks. A cross-layer optimization framework is proposed for joint user admission, user-base station (BS) association, power control, user grouping, transceiver design, as well as routing and flow control. We show that many of these cross-layer tasks can be treated in a unified way and implemented in a parallel manner using an efficient algorithmic framework called weighted minimum mean squared error (WMMSE). Some recent developments in this area are highlighted and future research directions are identified.
更多
查看译文
关键词
cellular radio,cloud computing,interference (signal),least mean squares methods,power control,radio transceivers,signal processing,telecommunication congestion control,5G networks,WMMSE-based approach,backhaul network,cellular networks,cloud centers,cloud technologies,cross-layer optimization framework,cross-layer provision,fifth-generation networks,flow control,frequency sharing,joint interference management,joint user admission,low-power nodes,mass-scale cloud architectures,network congestion,network provisioning,node density,parallel processing,power control,service coverage,signal processing algorithms,transceiver design,user grouping,user-base station association,virtualized cloud architectures,weighted minimum mean squared error,wireless data
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要