Potential information fields for mobile robot exploration

Robotics and Autonomous Systems(2015)

引用 37|浏览36
暂无评分
摘要
We present a decision theoretic approach to mobile robot exploration. The method evaluates the reduction of joint path and map entropy and computes a potential information field in robot configuration space using these joint entropy reduction estimates. The exploration trajectory is computed descending on the gradient of this field. The technique uses Pose SLAM as its estimation backbone. Very efficient kernel convolution mechanisms are used to evaluate entropy reduction for each sensor ray, and for each possible robot orientation, taking frontiers and obstacles into account. In the end, the computation of this field on the entire configuration space is shown to be very efficient. The approach is tested in simulations in a pair of publicly available datasets comparing favorably both in quality of estimates and in execution time against an RRT¿-based search for the nearest frontier and also against a locally optimal exploration strategy. Novel exploration method based on joint path and map entropy minimization.Minimizing both map and path entropies produces more reliable maps.Exploration is pursued by gradient descent over the potential information field.
更多
查看译文
关键词
Mobile robotics,SLAM,Exploration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要