Reversible detection of vancomycin using peptide-functionalized cantilever array sensor.

Biosensors & bioelectronics(2014)

引用 21|浏览13
暂无评分
摘要
A reversible detection method for vancomycin was developed utilizing the cantilever array sensor functionalized by a designed peptide consisting of a cysteine (Cys-), a space linker (-Gly-Gly-Gly-Gly-) and a molecular recognition ligand (-L-Lys-D-Ala-D-Ala). It was found that the peptide space linker was necessary and important for the response of the cantilever array sensor. The sensing cantilevers in the array were functionalized with the peptide while the reference cantilevers were modified by 6-mercapto-1-hexanol (MCH) to eliminate the influence of environmental disturbances. The binding between vancomycin and the peptide induced a change of surface stresses in the sensing cantilevers resulting in a differential deflection between the sensing and reference cantilevers. The reciprocal of the differential deflection is linear with the reciprocal of vancomycin concentration within the range of 2 μM to 100 μM (R=0.993) at a detection limit of 0.2 μM (S/N=3). The reversible detection can be realized just by regenerating the sensing cantilevers with running buffer solution. Other antibiotics such as doxycycline, streptomycin, and kanamycin have negligible effect on the response of the sensor. The sensor can also be utilized for reversible detection of vancomycin in serum background, which clearly indicates the potential of the sensor for vancomycin detection in real biological samples.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要