Insulin- and warts-dependent regulation of tracheal plasticity modulates systemic larval growth during hypoxia in Drosophila melanogaster.

PloS one(2014)

引用 41|浏览6
暂无评分
摘要
Adaptation to dynamic environmental cues during organismal development requires coordination of tissue growth with available resources. More specifically, the effects of oxygen availability on body size have been well-documented, but the mechanisms through which hypoxia restricts systemic growth have not been fully elucidated. Here, we characterize the larval growth and metabolic defects in Drosophila that result from hypoxia. Hypoxic conditions reduced fat body opacity and increased lipid droplet accumulation in this tissue, without eliciting lipid aggregation in hepatocyte-like cells called oenocytes. Additionally, hypoxia increased the retention of Dilp2 in the insulin-producing cells of the larval brain, associated with a reduction of insulin signaling in peripheral tissues. Overexpression of the wildtype form of the insulin receptor ubiquitously and in the larval trachea rendered larvae resistant to hypoxia-induced growth restriction. Furthermore, Warts downregulation in the trachea was similar to increased insulin receptor signaling during oxygen deprivation, which both rescued hypoxia-induced growth restriction, inhibition of tracheal molting, and developmental delay. Insulin signaling and loss of Warts function increased tracheal growth and augmented tracheal plasticity under hypoxic conditions, enhancing oxygen delivery during periods of oxygen deprivation. Our findings demonstrate a mechanism that coordinates oxygen availability with systemic growth in which hypoxia-induced reduction of insulin receptor signaling decreases plasticity of the larval trachea that is required for the maintenance of systemic growth during times of limiting oxygen availability.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要