Structured Linearization of Discrete Mechanical Systems for Analysis and Optimal Control

Automation Science and Engineering, IEEE Transactions  (2017)

引用 39|浏览32
暂无评分
摘要
Variational integrators are well-suited for simulation of mechanical systems because they preserve mechanical quantities about a system such as momentum, or its change if external forcing is involved, and holonomic constraints. While they are not energy-preserving they do exhibit long-time stable energy behavior. However, variational integrators often simulate mechanical system dynamics by solving an implicit difference equation at each time step, one that is moreover expressed purely in terms of configurations at different time steps. This paper formulates the first- and second-order linearizations of a variational integrator in a manner that is amenable to control analysis and synthesis, creating a bridge between existing analysis and optimal control tools for discrete dynamic systems and variational integrators for mechanical systems in generalized coordinates with forcing and holonomic constraints. The forced pendulum is used to illustrate the technique. A second example solves the discrete Linear Quadratic Regulator (LQR) problem to find a locally stabilizing controller for a 40 DOF system with six constraints.
更多
查看译文
关键词
Equations,Mathematical model,Optimal control,Mechanical systems,Approximation methods,Trajectory,Torque
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要