In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development.

ANALYTICAL CHEMISTRY(2011)

引用 94|浏览46
暂无评分
摘要
In vitro fertilization (IVF) technology has been broadly applied to solve human infertility in recent years. However, the physical tools for IVF remain unchanged over several decades before microfluidic technology was introduced in this field. Here, we report a novel microdevice that integrates each step of IVF, including oocyte positioning, sperm screening, fertilization, medium replacement, and embryo culture. Oocytes can be singly positioned in a 4 x 4 array of octacolumn units. The four symmetrical straight channels, crossing at the oocyte positioning region, allowed efficient motile sperm selection and facilitated rapid medium replacement. The fertilization process and early embryonic development of the individual zygote was traced with microscopic recording and analyzed by in situ fluorescent staining. The murine sperm motility was increased from 60.8 +/- 3.4% to 96.1 +/- 1.9% through the screening channels. The embryo growth rate and blastocyst formation were similar between the routine Petri dish group and the microdevice group. The healthy blastocysts developed in the microdevice could be conveniently retrieved through a routine pipetting operation and used for further embryo transfer.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要