The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional mafic-ultramafic rocks in the Dabie orogen

Chemical Geology, pp. 99-121, 2012.

Cited by: 43|Views26
WOS SCOPUS
Weibo:
This paper presents a combined study of whole-rock major-trace elements and Sr–Nd–Pb isotopes with zircon U–Pb ages and Lu–Hf isotopes for the postcollisional mafic–ultramafic rocks in the Dabie orogen

Abstract:

Postcollisional mafic–ultramafic rocks from the Dabie orogen were studied for their whole-rock major-trace elements and Sr–Nd–Pb isotopes in addition to zircon U–Pb ages and Lu–Hf isotopes. The results provide insights into the nature of orogenic lithospheric mantle in the continental collision zone. The zircon U–Pb dating gave consistent...More

Code:

Data:

0
Full Text
Bibtex
Weibo
Introduction
Highlights
  • It is widely recognized that the subducted oceanic crust can be recycled into the asthenospheric mantle to cause mantle heterogeneity (e.g., Zindler and Hart, 1986; Hofmann, 1997; Willbold and Stracke, 2010)
  • This paper presents a combined study of whole-rock major-trace elements and Sr–Nd–Pb isotopes with zircon U–Pb ages and Lu–Hf isotopes for the postcollisional mafic–ultramafic rocks in the Dabie orogen
  • The postcollisional mafic–ultramafic rocks in the Dabie orogen were emplaced at 125 ± 3 to 129± 1 Ma
  • Slab–mantle interaction in the continental subduction channel involves metasomatic reaction of the overlying subcontinental lithospheric mantle (SCLM)-wedge peridotite with hydrous felsic melts derived from the subducted continental crust
  • The enriched signatures of incompatible trace elements and radiogenic isotopes would be exclusively imparted by the subducted continental crust of the South China Block
  • Source mixing in the continental subduction channel would have played a key role in the formation of enriched SCLM domains in the orogenic lithospheric mantle
Methods
  • Major elements were measured by X-ray fluorescence (XRF) at the Analytical Center of Physics and Chemistry in University of Science and Technology of China, Hefei.
  • Whole-rock powder was dissolved for 7 days at ~ 100 °C using HF + HNO3 in a Teflon bomb and analyzed by an Agilent 7500a ICP-MS at the State Key Laboratory of Geological Processes and Mineral Resources of the China University of Geosciences, Wuhan.
Results
  • Hornblendite 09DSC02 and Pl-rich hornblendite 09DB96 from Daoshichong, hornblendite 09ZJP06 and pyroxenite 09ZJP08 from Zhujiapu were selected for the LA-ICPMS zircon U–Pb dating.
  • Zircons from the four samples are not euhedral (Fig. 3), and have grain sizes of 50 to 300 μm, with length to width ratios of 1:1 to 3:1.
  • Most zircons are characterized by magmatic oscillatory and banded zoning, which is typical of magmatic origin.
  • Residual zircon cores are observed in some grains from the Pl-rich hornblendite 09DB96 and hornblendite 09ZJP06
Conclusion
  • The present zircon U–Pb dating yields consistent ages of 125 ± 3 to 129 ± 1 Ma for magma emplacement of the mafic–ultramafic rocks at Daoshichong and Zhujiapu (Fig. 4).
  • They contain residual zircon cores with U–Pb ages of 234 ±5 Ma and 739± 9 Ma, suggesting involvement of the subducted continental crust
  • They exhibit significantly enriched signatures of incompatible trace elements (i.e. LREE and LILE) and radiogenic Sr–Nd–Pb–Hf isotopes, suggesting their origination from enriched SCLM domains in the orogenic lithospheric mantle.
  • The Triassic continental collision is suggested as a possible geodynamic mechanism for formation of the enriched SCLM domains above the continental subduction zone
  • In this regard, slab–mantle interaction in the continental subduction channel involves metasomatic reaction of the overlying SCLM-wedge peridotite with hydrous felsic melts derived from the subducted continental crust.
  • Such enriched SCLM domains may be common in the supra-subduction-zone continental lithosphere and serve as potential mantle sources for continental mafic magmatism
Summary
  • Introduction:

    It is widely recognized that the subducted oceanic crust can be recycled into the asthenospheric mantle to cause mantle heterogeneity (e.g., Zindler and Hart, 1986; Hofmann, 1997; Willbold and Stracke, 2010).
  • Postcollisional magmatism is common in many collisional orogens, for instance, in Pan-African, Alpine–Himalaya, and Dabie–Sulu (Bonin et al, 1998; Liégeois et al, 1998; Bonin, 2004; Chung et al, 2005; Dilek and Altunkaynak, 2007, 2009; Zhao and Zheng, 2009; Dilek et al, 2010; Eyal et al, 2010)
  • These postcollisional igneous rocks can provide valuable information about the nature of orogenic lithosphere.
  • Postcollisional mafic rocks may record possible interaction between the subducted continental crust and the overlying SCLM in continental subduction channels
  • Methods:

    Major elements were measured by X-ray fluorescence (XRF) at the Analytical Center of Physics and Chemistry in University of Science and Technology of China, Hefei.
  • Whole-rock powder was dissolved for 7 days at ~ 100 °C using HF + HNO3 in a Teflon bomb and analyzed by an Agilent 7500a ICP-MS at the State Key Laboratory of Geological Processes and Mineral Resources of the China University of Geosciences, Wuhan.
  • Results:

    Hornblendite 09DSC02 and Pl-rich hornblendite 09DB96 from Daoshichong, hornblendite 09ZJP06 and pyroxenite 09ZJP08 from Zhujiapu were selected for the LA-ICPMS zircon U–Pb dating.
  • Zircons from the four samples are not euhedral (Fig. 3), and have grain sizes of 50 to 300 μm, with length to width ratios of 1:1 to 3:1.
  • Most zircons are characterized by magmatic oscillatory and banded zoning, which is typical of magmatic origin.
  • Residual zircon cores are observed in some grains from the Pl-rich hornblendite 09DB96 and hornblendite 09ZJP06
  • Conclusion:

    The present zircon U–Pb dating yields consistent ages of 125 ± 3 to 129 ± 1 Ma for magma emplacement of the mafic–ultramafic rocks at Daoshichong and Zhujiapu (Fig. 4).
  • They contain residual zircon cores with U–Pb ages of 234 ±5 Ma and 739± 9 Ma, suggesting involvement of the subducted continental crust
  • They exhibit significantly enriched signatures of incompatible trace elements (i.e. LREE and LILE) and radiogenic Sr–Nd–Pb–Hf isotopes, suggesting their origination from enriched SCLM domains in the orogenic lithospheric mantle.
  • The Triassic continental collision is suggested as a possible geodynamic mechanism for formation of the enriched SCLM domains above the continental subduction zone
  • In this regard, slab–mantle interaction in the continental subduction channel involves metasomatic reaction of the overlying SCLM-wedge peridotite with hydrous felsic melts derived from the subducted continental crust.
  • Such enriched SCLM domains may be common in the supra-subduction-zone continental lithosphere and serve as potential mantle sources for continental mafic magmatism
Tables
  • Table1: LA-ICPMS zircon U–Pb isotope data for mafic–ultramafic rocks from the Dabie orogen
  • Table2: Major and trace element compositions of mafic–ultramafic rocks from the Dabie orogen
  • Table3: Whole-rock Rb–Sr and Sm–Nd isotope compositions of mafic–ultramafic rocks from the Dabie orogen
  • Table4: Whole-rock Pb isotope compositions of mafic–ultramafic rocks from the Dabie orogen
  • Table5: LA-MC-ICPMS zircon Lu–Hf isotope data for mafic–ultramafic rocks from the Dabie orogen
Download tables as Excel
Funding
  • This study was supported by funds from the Chinese Ministry of Science and Technology (2009CB825004), the Chinese Academy of Sciences (KZCX2-YW-QN513), the Natural Science Foundation of China (41125012, 41073025, and 40921002) and the Chinese Universities Scientific Fund (WK2080000032)
Study subjects and analysis
samples: 4
The zircon U–Pb isotopic data are presented in Table 1 and the CL images of representative zircons are illustrated in Fig. 3. Generally, zircons from the four samples are not euhedral (Fig. 3), and have grain sizes of 50 to 300 μm, with length to width ratios of 1:1 to 3:1. Most zircons are characterized by magmatic oscillatory and banded zoning, which is typical of magmatic origin

samples: 4
Residual zircon cores are observed in some grains from the Pl-rich hornblendite 09DB96 and hornblendite 09ZJP06. As illustrated in Fig. 4, the zircon U–Pb isotope data for the four samples are concordant within the analytical errors. Thirtythree analyses yield a weighted 206Pb/238U age of 129 ± 1 Ma (MSWD=1.6) for hornblendite 09DSC02

samples: 22
Whole-rock major and trace elements. The whole-rock major and trace element data for a total of 22 samples are presented in Table 2, including hornblendite and Pl-rich hornblendite from Daoshichong as well as pyroxenite, hornblendite and Pl-rich hornblendite from Zhujiapu. In the following discussion, all the major oxides used in diagrams are normalized to volatilefree before plotting

samples: 4
Zircon Hf isotopes. The zircons from the four samples that were dated by the U–Pb method were also analyzed for Lu–Hf isotopes simultaneously, and the results are listed in Table 5 and Fig. 8. The zircons from hornblendite 09DSC02 have very negative εHf(t) values of − 24.6 to − 39.7, with two-stage Hf model ages (TDM2) of 2734 to 3668 Ma

Reference
  • Blichert-Toft, J., Albarède, F., 1997. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth and Planetary Science Letters 148, 243–258.
    Google ScholarLocate open access versionFindings
  • Bonin, B., 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78, 1–24.
    Google ScholarLocate open access versionFindings
  • Bonin, B., Azzouni-Sekkal, A., Bussy, F., Ferrag, S., 1998. Alkali-calcic and alkaline postorogenic (PO) granite magmatism: petrologic constraints and geodynamic settings. Lithos 45, 45–70.
    Google ScholarLocate open access versionFindings
  • Bryant, D.L., Ayers, J.C., Gao, S., Miller, C.F., Zhang, H., 2004.
    Google ScholarFindings
  • Geochemical, age, and isotopic constraints on the location of the Sino-Korean/Yangtze Suture and evolution of the Northern Dabie Complex, east central China. Geological Society of America Bulletin 116, 698–717.
    Google ScholarFindings
  • Carlson, R.W., Nowell, G.M., 2001. Olivine-poor sources for mantle-derived magmas: Os and Hf isotopic evidence from potassic magmas of the Colorado Plateau. Geochemistry, Geophysics, Geosystems 2 (2000GC000128).
    Google ScholarLocate open access versionFindings
  • Chen, J.F., Jahn, B.M., 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 284, 101–133.
    Google ScholarLocate open access versionFindings
  • Chen, D., Wu, Y., Wang, Y., Zhi, X., Xia, Q., Yang, J., 1998.
    Google ScholarFindings
  • Chen, F.K., Hegner, E., Todt, W., 2000. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany—evidence for a Cambrian magmatic arc. International Journal of Earth Sciences 88, 791–802.
    Google ScholarLocate open access versionFindings
  • Chen, F.K., Siebel, W., Satir, M., Terzioglu, N., Saka, K., 2002a. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. International Journal of Earth Sciences 91, 469–481.
    Google ScholarLocate open access versionFindings
  • Chen, B., Jahn, B.-m, Wei, C., 2002b. Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: trace element and Nd–Sr isotope evidence. Lithos 60, 67–88.
    Google ScholarLocate open access versionFindings
  • Chen, J.F., Xie, Z., Li, H.M., Zhang, X.-D., Zhou, T.X., Park, Y.S., Ahn, K.S., Chen, D.G., Zhang, X., 2003. U–Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochemical Journal 37, 35–46.
    Google ScholarLocate open access versionFindings
  • Chen, F.K., Li, X.-H., Wang, X.-L., Li, Q.-L., Siebel, W., 2007a. Zircon age and Nd–Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. International Journal of Earth Sciences 96, 1179–1194.
    Google ScholarLocate open access versionFindings
  • Chen, R.-X., Zheng, Y.-F., Gong, B., Zhao, Z.-F., Gao, T.-S., Chen, B., Wu, Y.-B., 2007b. Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks: constraints from mineral hydrogen isotope and water content changes in eclogite–gneiss transitions in the Sulu orogen. Geochimica et Cosmochimica Acta 71, 2299–2325.
    Google ScholarLocate open access versionFindings
  • Chen, R.-X., Zheng, Y.-F., Gong, B., 2011. Mineral hydrogen isotopes and water contents in ultrahigh-pressure metabasite and metagranite: constraints on fluid flow during continental subduction-zone metamorphism. Chemical Geology 281, 103–124.
    Google ScholarLocate open access versionFindings
  • Chopin, C., 2003. Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth and Planetary Science Letters 212, 1–14.
    Google ScholarLocate open access versionFindings
  • Chu, N.-C., Taylor, R.N., Chavagnac, V.r, Nesbitt, R.W., Boella, R.M., Milton, J.A., German, C.R., Bayon, G., Burton, K., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17, 1567–1574.
    Google ScholarFindings
  • Chung, S., Chu, M., Zhang, Y., Xie, Y., Lo, C., Lee, T., Lan, C., Li, X., Zhang, Q., Wang, Y., 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews 68, 173–196.
    Google ScholarLocate open access versionFindings
  • Coltorti, M., Bonadiman, C., Faccini, B., Grégoire, M., O'Reilly, S.Y., Powell, W., 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos 99, 68–84.
    Google ScholarLocate open access versionFindings
  • Dai, L.-Q., Zhao, Z.-F., Zheng, Y.-F., Li, Q., Yang, Y., Dai, M., 2011. Zircon Hf–O isotope evidence for crust–mantle interaction during continental deep subduction. Earth and Planetary Science Letters 308, 224–244.
    Google ScholarLocate open access versionFindings
  • Dilek, Y., Altunkaynak, S., 2007. Cenozoic crustal evolution and mantle dynamics of postcollisional magmatism in western Anatolia. International Geology Review 49, 431–453.
    Google ScholarLocate open access versionFindings
  • Dilek, Y., Altunkaynak, S., 2009. Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab break-off, and lithospheric tearing in an orogenic belt. Geological Society Special Publications 311, 213–233.
    Google ScholarLocate open access versionFindings
  • Dilek, Y., Imamverdiyev, N., Altunkaynak, S., 2010. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review 52, 536–578.
    Google ScholarLocate open access versionFindings
  • Downes, H., 2007. Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: ultramafic massifs in orogenic belts in Western Europe and NW Africa. Lithos 99, 1–24.
    Google ScholarLocate open access versionFindings
  • Downes, H., Beard, A., Hinton, R., 2004. Natural experimental charges: an ion-microprobe study of trace element distribution coefficients in glass-rich hornblendite and clinopyroxenite xenoliths. Lithos 75, 1–17.
    Google ScholarLocate open access versionFindings
  • Elhlou, S., Belousova, E., Griffin, W.L., Pearson, N.J., O'Reilly, S.Y., 2006. Trace element and isotopic composition of GJ red zircon standard by laser ablation. Geochimica et Cosmochimica Acta 70, A158. http://dx.doi.org/10.1016/j.gca.2006.06.1383.
    Locate open access versionFindings
  • Ernst, W.G., 2005. Alpine and Pacific styles of Phanerozoic mountain building: subduction-zone petrogenesis of continental crust. Terra Nova 17, 165–188.
    Google ScholarLocate open access versionFindings
  • Eyal, M., Litvinovsky, B., Jahn, B.M., Zanvilevich, A., Katzir, Y., 2010. Origin and evolution of post-collisional magmatism: coeval Neoproterozoic calc-alkaline and alkaline suites of the Sinai Peninsula. Chemical Geology 269, 153–179.
    Google ScholarLocate open access versionFindings
  • Fan, W.-M., Guo, F., Wang, Y.-J., Zhang, M., 2004. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie orogen? Chemical Geology 209, 27–48.
    Google ScholarLocate open access versionFindings
  • Foley, S.F., Jackson, S.E., Fryer, J.D., Greenough, G.A.J., 1996. Trace element partition coefficients for clinopyroxene and phlogophite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS. Geochimica et Cosmochimica Acta 60, 629–638.
    Google ScholarLocate open access versionFindings
  • Frost, D.J., 2006. The stability of hydrous mantle phases. Reviews in Mineralogy and Geochemistry 62, 243–271.
    Google ScholarLocate open access versionFindings
  • Gaetani, G.A., Grove, T.L., Bryan, W.B., 1993. The influence of water on the petrogenesis of subduction related igneous rocks. Nature 365, 332–334.
    Google ScholarLocate open access versionFindings
  • Gray, C.M., Oversby, V.M., 1972. The behaviour of lead isotopes during granulite facies metamorphism. Geochimica et Cosmochimica Acta 36, 930–952.
    Google ScholarLocate open access versionFindings
  • Grégoire, M., Lorand, J.P., O'Reilly, S.Y., Cottin, J.Y., 2000. Armalcolite-bearing, Ti-rich metasomatic assemblages in harzburgitic xenoliths from the Kerguelen Islands: implications from the oceanic mantle budget of high-filed strength elements. Geochimica et Cosmochimica Acta 64, 673–694.
    Google ScholarLocate open access versionFindings
  • Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O'Reilly, S.Y., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–147.
    Google ScholarLocate open access versionFindings
  • Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X., Zhou, X., 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61, 237–269.
    Google ScholarLocate open access versionFindings
  • Hart, S.R., 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–757.
    Google ScholarLocate open access versionFindings
  • Herzberg, C., 2011. Identification of source lithology in the Hawaiian and Canary islands: implications for origins. Journal of Petrology 52, 113–146.
    Google ScholarLocate open access versionFindings
  • Hirschmann, M.M., Kogiso, T., Baker, M.B., Stolper, E.M., 2003. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31, 481–484.
    Google ScholarLocate open access versionFindings
  • Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229.
    Google ScholarLocate open access versionFindings
  • Huang, J., Zheng, Y.-F., Zhao, Z.-F., Wu, Y.-B., Zhou, J.-B., Liu, X.-M., 2006. Melting of subducted continent: element and isotopic evidence for a genetic relationship between Neoproterozoic and Mesozoic granitoids in the Sulu orogen. Chemical Geology 229, 227–256.
    Google ScholarLocate open access versionFindings
  • Huang, F., Li, S.G., Dong, F., Li, Q.L., Chen, F., Wang, Y., Yang, W., 2007. Recycling of deeply subducted continental crust in the Dabie Mountains, central China. Lithos 96, 151–169.
    Google ScholarLocate open access versionFindings
  • Huang, F., Li, S., Dong, F., He, Y., Chen, F., 2008. High-Mg adakitic rocks in the Dabie orogen, central China: implications for foundering mechanism of lower continental crust. Chemical Geology 255, 1–13.
    Google ScholarLocate open access versionFindings
  • Humayun, M., Qin, L.P., Norman, M.D., 2004. Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306, 91–94.
    Google ScholarLocate open access versionFindings
  • Iizuka, T., Hirata, T., 2005. Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chemical Geology 220, 121–137.
    Google ScholarLocate open access versionFindings
  • Ionov, D.A., O'Reilly, S.Y., Griffin, W.L., 1997. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chemical Geology 141, 153–184.
    Google ScholarLocate open access versionFindings
  • Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–548.
    Google ScholarLocate open access versionFindings
  • Jahn, B.-m., 1998. Geochemical and isotopic characteristics of UHP eclogites and ultramafic rocks of the Dabie orogen: implications for continental subduction and collisional tectonics. In: Hacker, B.R., Liou, J.G. (Eds.), When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-pressure Rocks. Kluwer Academic Publishers, Dordrecht, pp. 203–239.
    Google ScholarLocate open access versionFindings
  • Jahn, B.-m, Wu, F.-Y., Lo, C.-H., Tsai, C.-H., 1999. Crustal–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology 157, 119–146.
    Google ScholarLocate open access versionFindings
  • Keshav, S., Gudfinnsson, G.H., Sen, G., Fei, Y.W., 2004. High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean island basalts. Earth and Planetary Science Letters 223, 365–379.
    Google ScholarLocate open access versionFindings
  • Kogiso, T., Hirschmann, M.M., 2001. Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions. Contributions to Mineralogy and Petrology 142, 347–360.
    Google ScholarLocate open access versionFindings
  • Kogiso, T., Hirschmann, M.M., 2006. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth and Planetary Science Letters 249, 188–199.
    Google ScholarLocate open access versionFindings
  • Kogiso, T., Hirschmann, M.M., Frost, D.J., 2003. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth and Planetary Science Letters 216, 603–617.
    Google ScholarLocate open access versionFindings
  • LaTourrette, T., Hervig, R.L., Holloway, J.R., 1995. Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth and Planetary Science Letters 135, 13–30.
    Google ScholarLocate open access versionFindings
  • Le Roux, V., Lee, C.T.A., Turner, S.J., 2010. Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth's mantle. Geochimica et Cosmochimica Acta 74, 2779–2796.
    Google ScholarLocate open access versionFindings
  • Le Roux, V., Dasgupta, R., Lee, C.T.A., 2011. Mineralogical heterogeneities in the Earth's mantle: constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters 307, 395–408.
    Google ScholarLocate open access versionFindings
  • Lee, C.-T.A., Luffi, P., Le Roux, V., Dasgupta, R., Albaréde, F., Leeman, W.P., 2010. The redox state of arc mantle using Zn/Fe systematics. Nature 468, 681–685.
    Google ScholarLocate open access versionFindings
  • Li, S.G., Nie, Y.H., Hart, S.R., Zheng, S.G., 1998. Interaction between subducted continental crust and the mantle II. Sr and Nd isotopic geochemistry of the syncollisional mafic to ultramafic intrusions in northern Dabieshan. Science in China (D) 28, 18–22.
    Google ScholarLocate open access versionFindings
  • Li, S.G., Jagoutz, E., Lo, C.H., Chen, Y.Z., Li, Q.L., Xiao, Y.L., 1999. Sm/Nd, Rb/Sr, and 40Ar/ 39Ar isotopic systematics of the ultrahigh-pressure metamorphic rocks in the Dabie–Sulu belt, central China: a retrospective view. International Geology Review 41, 1114–1124.
    Google ScholarLocate open access versionFindings
  • Li, S.G., Jagoutz, E., Chen, Y.Z., Li, Q.L., 2000. Sm–Nd and Rb–Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China. Geochimica et Cosmochimica Acta 64, 1077–1093.
    Google ScholarLocate open access versionFindings
  • Li, S.G., Huang, F., Zhou, H.Y., Li, H.M., 2003. U–Pb isotopic compositions of the ultrahigh pressure metamorphic (UHPM) rocks from Shuanghe and gneisses from Northern Dabie zone in the Dabie Mountains, central China: constraint on the exhumation mechanism of UHPM rocks. Science in China (D) 46, 200–209.
    Google ScholarLocate open access versionFindings
  • Liégeois, J.P., Navez, J., Hertogen, J., Black, R., 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 45, 1–28.
    Google ScholarLocate open access versionFindings
  • Liou, J.G., Zhang, R.Y., Ernst, W.G., 1997. Lack of fluid during ultrahigh-P metamorphism in the Dabie–Sulu region, Eastern China. Proceedings of the 30th International Geologic Congress, 17, pp. 141–155.
    Google ScholarLocate open access versionFindings
  • Liou, J.G., Ernst, W.G., Zhang, R.Y., Tsujimori, T., Jahn, B.-m., 2009. Ultrahigh-pressure minerals and metamorphic terranes—the view from China. Journal of Asian Earth Sciences 35, 199–231.
    Google ScholarLocate open access versionFindings
  • Liu, Y.C., Li, S.G., 2008. Detachment within subducted continental crust and multi-slice successive exhumation of ultrahigh-pressure metamorphic rocks: evidence from the Dabie–Sulu orogenic belt. Chinese Science Bulletin 53, 3105–3119.
    Google ScholarLocate open access versionFindings
  • Liu, Y.C., Li, S.G., Xu, S.T., Jahn, B.-m., Zheng, Y.-F., Zhang, Z.Q., Jiang, L.L., Chen, G.B., Wu, W.P., 2005. Geochemistry and geochronology of eclogites from the north Dabie Mountains, central China. Journal of Asian Earth Sciences 25, 431–443.
    Google ScholarLocate open access versionFindings
  • Liu, Y.C., Li, S.G., Xu, S.T., 2007. Zircon SHRIMP U–Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China: implications for decoupling within subducted continental crust. Lithos 96, 170–185.
    Google ScholarLocate open access versionFindings
  • Liu, Y.-S., Gao, S., Hu, Z.-C., Gao, C.-G., Zong, K.-Q., Wang, D.-B., 2010. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology 51, 537–571.
    Google ScholarLocate open access versionFindings
  • Liu, Y.C., Gu, X.F., Li, S.G., Hou, Z.H., Song, B., 2011. Multistage metamorphic events in granulitized eclogites from the North Dabie complex zone, central China: evidence from zircon U–Pb age, trace element and mineral inclusion. Lithos 122, 107–121.
    Google ScholarLocate open access versionFindings
  • Ma, C.Q., Li, Z., Ehlers, C., Yang, K., Wang, R., 1998. A post-collisional magmatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, east-central China. Lithos 45, 431–456.
    Google ScholarLocate open access versionFindings
  • Ma, C.Q., Ehlers, C., Xu, C., Li, Z., Yang, K., 2000. The roots of the Dabieshan ultrahighpressure metamorphic terrane: constraints from geochemistry and Nd–Sr isotope systematics. Precambrian Research 102, 279–301.
    Google ScholarLocate open access versionFindings
  • Machado, N., Simonetti, A., 2001. U-Pb dating and Hf isotopic composition of zircons by laser ablation-MC-ICP-MS. Laser-Ablation-ICPMS in the Earth Sciences: Principles and Applications: In: Sylvester, P. (Ed.), Short Course of Mineralogical Association of Canada, 29, pp. 121–146.
    Google ScholarLocate open access versionFindings
  • Malaspina, N., Hermann, J., Scambelluri, M., Compagnoni, R., 2006. Polyphase inclusions in garnet-orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth and Planetary Science Letters 249, 173–187.
    Google ScholarLocate open access versionFindings
  • McDonough, W.F., Sun, S.-s, 1995. The composition of the Earth. Chemical Geology 120, 223–253.
    Google ScholarLocate open access versionFindings
  • Middlemost, E.A.K., 1994. Naming materials in magma/igneous rock system. EarthScience Reviews 37, 215–224.
    Google ScholarLocate open access versionFindings
  • Moorbath, S., Welke, H., Gale, N.H., 1969. The significance of lead isotope studies in ancient, high-grade metamorphic basement complexes, as exemplified by the Lewisian rocks of northwest Scotland. Earth and Planetary Science Letters 6, 245–256.
    Google ScholarLocate open access versionFindings
  • Müntener, O., Kelemen, P., Grove, T., 2001. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contributions to Mineralogy and Petrology 141, 643–658.
    Google ScholarLocate open access versionFindings
  • Okay, A.I., Xu, S., Sengor, A.M.C., 1989. Coesite from the Dabie Shan eclogites, central China. European Journal of Mineralogy 1, 595–598.
    Google ScholarLocate open access versionFindings
  • O'Reilly, S.Y., Griffin, W.L., 2006. Imaging chemical and thermal heterogeneity in the sub-continental lithospheric mantle with garnets and xenoliths: geophysical implications. Tectonophysics 416, 289–309.
    Google ScholarLocate open access versionFindings
  • Pearson, D.G., Wittig, N., 2008. Formation of Archaean continental lithosphere and its diamonds: the root of the problem. Journal of the Geological Society 165, 895–914.
    Google ScholarLocate open access versionFindings
  • Pertermann, M., Hirschmann, M.M., 2003a. Partial melting experiments on a MORBlike pyroxenite between 2 and 3 GPa; constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. Journal of Geophysical Research 108 (B2), 2125. http://dx.doi.org/10.1029/2000JB000118.
    Locate open access versionFindings
  • Pertermann, M., Hirschmann, M.M., 2003b. Anhydrous partial melting experiment on MORB-like eclogites phase relations, phase composition and mineral–melt partitioning of major elements at 2–3 GPa. Journal of Petrology 44, 2173–2202.
    Google ScholarLocate open access versionFindings
  • Pilet, S., Baker, M.B., Stolper, E.M., 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science 320, 916–919.
    Google ScholarLocate open access versionFindings
  • Pilet, S., Baker, M.B., Muntener, O., Stolper, E.M., 2011. Monte Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. Journal of Petrology 52, 1415–1442.
    Google ScholarLocate open access versionFindings
  • Powell, W., Zhang, M., O'Reilly, S.Y., Tiepolo, M., 2004. Mantle amphibole trace-element and isotopic signatures trace multiple metasomatic episodes in lithospheric mantle, western Victoria, Australia. Lithos 75, 141–171.
    Google ScholarLocate open access versionFindings
  • Prouteau, G., Scaillet, B., Pichavant, M., Maury, R., 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410, 197–200.
    Google ScholarLocate open access versionFindings
  • Qin, L.P., Humayun, M., 2008. The Fe/Mn ratio in MORB and OIB determined by ICP-MS. Geochimica et Cosmochimica Acta 72, 1660–1677.
    Google ScholarLocate open access versionFindings
  • Rapp, R.P., Shimizu, N., Norman, M.D., Applegate, G.S., 1999. Reaction between slabderived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology 160, 335–356.
    Google ScholarLocate open access versionFindings
  • Rapp, R.P., Norman, M.D., Laporte, D., Yaxley, G.M., Martin, H., Foley, S.F., 2010. Continent formation in the Archean and chemical evolution of the cratonic lithosphere: melt–rock reaction experiments at 3–4 GPa and petrogenesis of archean Mgdiorites (sanukitoids). Journal of Petrology 51, 1237–1266.
    Google ScholarLocate open access versionFindings
  • Rudnick, R.L., 1995. Making continental crust. Nature 378, 571–578.
    Google ScholarLocate open access versionFindings
  • Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. Treatise on Geochemistry 3, 1–64.
    Google ScholarLocate open access versionFindings
  • Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the lutetium–hafnium clock.
    Google ScholarFindings
  • Schiano, P., Eiler, J.M., Hutcheon, I.D., Stolper, E.M., 2000. Primitive CaO-rich, silicaundersaturated melts in island arcs: evidence for the involvement of clinopyroxenerich lithologies in the petrogenesis of arc magmas. Geochemistry, Geophysics, Geosystems 1 (1999GC000032).
    Google ScholarLocate open access versionFindings
  • Schmidt, M.W., Poli, S., 2003. Generation of mobile components during subduction of oceanic crust. Treatise on Geochemistry 3, 567–591.
    Google ScholarLocate open access versionFindings
  • Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., Nikogosian, I.K., 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–597.
    Google ScholarLocate open access versionFindings
  • Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., Yaxley, G.M., Arndt, N.T., Chung, S.-L., Danyushevsky, L.V., Elliott, T., Frey, F.A., Garcia, M.O., Gurenko, A.A., Kamenetsky, V.S., Kerr, A.C., Krivolutskaya, N.A., Matvienkov, V.V., Nikogosian, I.K., Rocholl, A., Sigurdsson, I.A., Sushchevskaya, N.M., Teklay, M., 2007. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417.
    Google ScholarLocate open access versionFindings
  • Sobolev, S.V., Sobolev, A.V., Kuzmin, D.V., Krivolutskaya, N.A., Petrunin, A.G., Arndt, N.T., Radko, V.A., Vasiliev, Y.R., 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316.
    Google ScholarLocate open access versionFindings
  • Sun, W.D., Ding, X., Hu, Y.H., Li, X.-H., 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters 262, 533–542.
    Google ScholarLocate open access versionFindings
  • Tang, J., Zheng, Y.-F., Wu, Y.-B., Gong, B., Zha, X.P., Liu, X.-M., 2008a. Zircon U–Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China. Precambrian Research 161, 389–418.
    Google ScholarLocate open access versionFindings
  • Tang, J., Zheng, Y.-F., Gong, B., Wu, Y.-B., Gao, T.-S., Yuan, H.-L., Wu, F.-Y., 2008b. Extreme oxygen isotope signature of meteoric water in magmatic zircon from metagranite in the Sulu orogen, China: implications for Neoproterozoic rift magmatism. Geochimica et Cosmochimica Acta 72, 3139–3169.
    Google ScholarLocate open access versionFindings
  • Taylor, S.R., McLennan, S.M., 1995. The geochemical evolution of the continental crust. Reviews of Geophysics 33, 241–265.
    Google ScholarLocate open access versionFindings
  • Tiepolo, M., Oberti, R., Zanetti, A., Vannucci, R., Foley, S.F., 2007. Trace-element partitioning between amphibole and silicate melt. Reviews in Mineralogy and Geochemistry 67, 417–452.
    Google ScholarLocate open access versionFindings
  • Wagner, T.P., Grove, T.L., 1998. Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea volcano, Hawaii. Contributions to Mineralogy and Petrology 131, 1–12.
    Google ScholarLocate open access versionFindings
  • Wallis, S., Tsuboi, M., Suzuki, K., Fanning, M., Jiang, L., Tanaka, T., 2005. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology 33, 129–132.
    Google ScholarLocate open access versionFindings
  • Walter, M.J., 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology 39, 29–60.
    Google ScholarLocate open access versionFindings
  • Wang, X.-M., Liou, J.-G., Mao, H.-K., 1989. Coesite-bearing eclogites from the Dabie Mountains in central China. Geology 17, 1085–1088.
    Google ScholarLocate open access versionFindings
  • Wang, Y.-J., Fan, W.-M., Peng, T., Zhang, H., Guo, F., 2005. Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie Orogen, Central China: evidence from Ar/Ar geochronology, elemental and Sr–Nd–Pb isotopic compositions of early Cretaceous mafic igneous rocks. Chemical Geology 220, 165–189.
    Google ScholarLocate open access versionFindings
  • Wang, Q., Wyman, D.A., Xu, J.-F., Jian, P., Zhao, Z.-H., Li, C.-F., Xu, W., Ma, J.-L., He, B., 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta 71, 2609–2636.
    Google ScholarLocate open access versionFindings
  • Wang, Y., Zhao, Z.-F., Zheng, Y.-F., Zhang, J.-J., 2011. Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China. Lithos 125, 940–955.
    Google ScholarLocate open access versionFindings
  • Willbold, M., Stracke, A., 2010. Formation of enriched mantle components by recycling of upper and lower crust. Chemical Geology 276, 188–197.
    Google ScholarLocate open access versionFindings
  • Woodhead, J.D., Hergt, J.M., 2005. Preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research 29, 183–195.
    Google ScholarLocate open access versionFindings
  • Woodhead, J., Hergt, J., Shelley, M., Eggins, S., Kemp, R., 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology 209, 121–135.
    Google ScholarLocate open access versionFindings
  • Wu, F.Y., Lin, J.Q., Wilde, S.A., Zhang, X.O., Yang, J.H., 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters 233, 103–119.
    Google ScholarLocate open access versionFindings
  • Xia, Q.-X., Zheng, Y.-F., Zhou, L.-G., 2008. Dehydration and melting during continental collision: constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chemical Geology 247, 36–65.
    Google ScholarLocate open access versionFindings
  • Xie, Z., Zheng, Y.-F., Zhao, Z.-F., Wu, Y.-B., Wang, Z.-R., Chen, J.-F., Liu, X.M., Wu, F.Y., 2006. Mineral isotope evidence for the contemporaneous process of Mesozoic granite emplacement and gneiss metamorphism in the Dabie orogen. Chemical Geology 231, 214–235.
    Google ScholarLocate open access versionFindings
  • Xu, S.T., Su, W., Liu, Y.C., Jiang, L.L., Ji, S.Y., Okay, A.I., Sengor, A.M.C., 1992. Diamonds from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science 256, 80–82.
    Google ScholarLocate open access versionFindings
  • Xu, S.T., Liu, Y.C., Chen, G.B., Compagnoni, R., Rolfo, F., He, M.C., Liu, H.F., 2003. New findings of micro-diamonds in eclogites from the Dabie–Sulu region in central eastern China. Chinese Science Bulletin 48, 988–994.
    Google ScholarLocate open access versionFindings
  • Xu, S.T., Liu, Y.C., Chen, G.B., Ji, S.Y., Ni, P., Xiao, W.S., 2005.
    Google ScholarLocate open access versionFindings
  • Xu, H.J., Ma, C.Q., Ye, K., 2007. Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U–Pb dating and geochemistry. Chemical Geology 240, 238–259.
    Google ScholarLocate open access versionFindings
  • Xu, H.J., Ye, K., Ma, C.Q., 2008. Early Cretaceous granitoids in the North Dabie and their tectonic implications: Sr–Nd and zircon Hf isotopic evidences. Acta Petrologica Sinica (in Chinese with English abstract) 24, 87–103.
    Google ScholarLocate open access versionFindings
  • Xu, Z., Zhao, Z.-F., Zheng, Y.-F., 2012. Slab–mantle interaction for thinning of cratonic lithospheric mantle in North China: geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos 146–147, 202–217.
    Google ScholarLocate open access versionFindings
  • Yang, J.-H., Chung, S.-L., Wilde, S.A., Wu, F.-Y., Chu, M.-F., Lo, Q.-H., Fan, H.-R., 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd–Sr isotopic evidence. Chemical Geology 214, 99–125.
    Google ScholarLocate open access versionFindings
  • Yaxley, G.M., Green, D.H., 1998. Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweizerische Mineralogische et Petrologische Mitteilung 78, 243–255.
    Google ScholarLocate open access versionFindings
  • Yuan, H.-L., Gao, S., Dai, M.-N., Zong, C.-L., Günther, D., Fontaine, G.H., Liu, X.-M., Diwu, C., 2008. Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiplecollector ICP-MS. Chemical Geology 247, 100–118.
    Google ScholarLocate open access versionFindings
  • Zartman, R.E., Doe, B.R., 1981. Plumbotectonics — the model. Tectonophysics 75, 135–162.
    Google ScholarLocate open access versionFindings
  • Zhang, H.F., Yang, Y.H., 2007. Emplacement age and Sr–Nd–Pb Hf isotopic characteristics of the diamondiferous kimberlites from the eastern North China Craton. Acta Petrologica Sinica 23, 285–294 (in Chinese with English abstract).
    Google ScholarLocate open access versionFindings
  • Zhang, H.F., Gao, S., Zhong, Z., Zhang, B., Zhang, L., Hu, S., 2002. Geochemical and Sr– Nd–Pb isotopic compositions of Cretaceous granitoids: constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology 186, 281–299.
    Google ScholarLocate open access versionFindings
  • Zhang, R.Y., Liou, J.G., Ernst, W.G., 2009a. The Dabie–Sulu continental collision zone: a comprehensive review. Gondwana Research 16, 1–26.
    Google ScholarLocate open access versionFindings
  • Zhang, J.-J., Zheng, Y.-F., Zhao, Z.-F., 2009b. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos 110, 305–326.
    Google ScholarLocate open access versionFindings
  • Zhang, J., Zhao, Z.-F., Zheng, Y.-F., Dai, M., 2010a. Postcollisional magmatism: geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China. Lithos 119, 512–536.
    Google ScholarLocate open access versionFindings
  • Zhang, R.Y., Jahn, B.M., Liou, J.G., Yang, J.S., Chiu, H.Y., Chung, S.L., Li, T.F., Lo, C.H., 2010b. Origin and tectonic implication of an UHP metamorphic mafic–ultramafic complex from the Sulu UHP terrane, eastern China: evidence from petrological and geochemical studies of CCSD-Main Hole core samples. Chemical Geology 276, 69–87.
    Google ScholarLocate open access versionFindings
  • Zhang, R.Y., Liou, J.G., Huberty, J.M., Xu, H., Maki, K., Jahn, B.-m, Iizuka, Y., 2011. Origin and metamorphic evolution of garnet clinopyroxenite from the Sulu UHP terrane, China. Ultrahigh-Pressure Metamorphism: 25 Years after the Discovery of Coesite and Diamond. Elsevier, Amsterdam, pp. 151–185.
    Google ScholarFindings
  • Zhang, J., Zhao, Z.-F., Zheng, Y.-F., Liu, X., Xie, L., 2012. Zircon Hf–O isotope and wholerock geochemical constraints on origin of postcollisional mafic to felsic dykes in the Sulu orogen. Lithos 136–139, 225–245.
    Google ScholarLocate open access versionFindings
  • Zhao, Z.-F., Zheng, Y.-F., 2009. Remelting of subducted continental lithosphere: petrogenesis of Mesozoic magmatic rocks in the Dabie–Sulu orogenic belt. Science in China (D) 52, 1295–1318.
    Google ScholarLocate open access versionFindings
  • Zhao, Z.-F., Zheng, Y.-F., Wei, C.-S., Wu, Y.-B., 2004. Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China. Geophysical Research Letters 31, L22602. http://dx.doi.org/10.1029/2004GL021061.
    Locate open access versionFindings
  • Zhao, Z.-F., Zheng, Y.-F., Wei, C.-S., Wu, Y.-B., Chen, F., Jahn, B.-m., 2005. Zircon U–Pb age, element and C–O isotope geochemistry of post-collisional mafic–ultramafic rocks from the Dabie orogen in east-central China. Lithos 83, 1–28.
    Google ScholarLocate open access versionFindings
  • Zhao, Z.-F., Zheng, Y.-F., Wei, C.-S., Wu, Y.-B., 2007a. Post-collisional granitoids from the Dabie orogen in China: zircon U–Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos 93, 248–272.
    Google ScholarLocate open access versionFindings
  • Zhao, Z.-F., Zheng, Y.-F., Chen, R.-X., Xia, Q.-X., Wu, Y.-B., 2007b. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochimica et Cosmochimica Acta 71, 5244–5266.
    Google ScholarLocate open access versionFindings
  • Zhao, Z.-F., Zheng, Y.-F., Wei, C.-S., Chen, F.-K., Liu, X., Wu, F., 2008. Zircon U–Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chemical Geology 253, 222–242.
    Google ScholarLocate open access versionFindings
  • Zhao, Z.-F., Zheng, Y.-F., Wei, C.-S., Wu, F.-Y., 2011. Origin of postcollisional magmatic rocks in the Dabie orogen: implications for crust–mantle interaction and crustal architecture. Lithos 126, 99–114.
    Google ScholarLocate open access versionFindings
  • Zhao, Z.-F., Zheng, Y.-F., Zhang, J., Dai, L.-Q., Li, Q., Liu, X., 2012. Syn-exhumation magmatism during continental collision: evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chemical Geology 328, 70–88.
    Google ScholarLocate open access versionFindings
  • Zheng, Y.-F., 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie–Sulu orogenic belt. Chinese Science Bulletin 53, 3081–3104.
    Google ScholarLocate open access versionFindings
  • Zheng, Y.-F., 2009. Fluid regime in continental subduction zones: petrological insights from ultrahigh-pressure metamorphic rocks. Journal of the Geological Society Geological Society 166, 763–782.
    Google ScholarLocate open access versionFindings
  • Zheng, Y.-F., 2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology 328, 5–48.
    Google ScholarLocate open access versionFindings
  • Zheng, X.S., Jin, C.W., Zhai, M.G., et al., 2000. Approach to the source of the gray gneisses in North Dabie terrain: Sm–Nd isochron age and isotope composition. Acta Petrologica Sinica 16, 194–198 (in Chinese with English abstract).
    Google ScholarLocate open access versionFindings
  • Zheng, Y.-F., Fu, B., Gong, B., Li, L., 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie–Sulu orogen in China: implications for geodynamics and fluid regime. Earth-Science Reviews 62, 105–161.
    Google ScholarLocate open access versionFindings
  • Zheng, Y.-F., Wu, Y.-B., Chen, F.-K., Gong, B., Li, L., Zhao, Z.-F., 2004. Zircon U–Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta 68, 4145–4165.
    Google ScholarLocate open access versionFindings
  • Zheng, Y.-F., Zhou, J.-B., Wu, Y.-B., Xie, Z., 2005. Low-grade metamorphic rocks in the Dabie–Sulu orogenic belt: a passive-margin accretionary wedge deformed during continent subduction. International Geology Review 47, 851–871.
    Google ScholarLocate open access versionFindings
  • Zheng, Y.-F., Wu, R.-X., Wu, Y.-B., Zhang, S.-B., Yuan, H., Wu, F.-Y., 2008. Rift melting of juvenile arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research 163, 351–383.
    Google ScholarLocate open access versionFindings
  • Zheng, Y.-F., Chen, R.-X., Zhao, Z.-F., 2009. Chemical geodynamics of continental subduction-zone metamorphism: insight from studies of the Chinese Scientific Drilling (CCSD) core samples. Tectonophysics 475, 327–358.
    Google ScholarLocate open access versionFindings
  • Zheng, Y.-F., Xia, Q.-X., Chen, R.-X., Gao, X.-Y., 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Science Reviews 107, 342–374.
    Google ScholarLocate open access versionFindings
  • Zindler, A., Hart, S., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493–571.
    Google ScholarLocate open access versionFindings
Your rating :
0

 

Tags
Comments