Architecting Microprocessor Components in 3D Design Space

VLSI Design(2007)

引用 62|浏览55
暂无评分
摘要
Interconnect is one of the major concerns in current and future microprocessor designs from both performance and power consumption perspective. The emergence of three-dimensional (3D) chip architectures, with its intrinsic capability to reduce the wire length, is one of the promising solutions to mitigate the interconnect related issues. In this paper we implement a few components of a microprocessor using custom design to show the potential performance and power benefits achievable through 3D integration under thermal constraints. We also introduce a standard cell based 3D design flow which leverages the commercial 2D design tools. Using this design flow we provide performance results of wide range of arithmetic units in 3D, thus introducing a fast method to analyze the performance benefits of 3D designs. In contrast to prior work, which mostly investigates single components of a processor, our work takes multiple components into consideration and the experimental results are promising in terms of delay and power reductions. Complex designs in 3D that have equivalent performance compared to a simple 2D designs is taken for IPC improvement analysis. An IPC improvement of 11% shown for a microprocessor implemented in 2-strata 3D technology.
更多
查看译文
关键词
design flow,performance result,performance benefit,architecting microprocessor components,power benefit,custom design,future microprocessor design,design space,potential performance,design tool,equivalent performance,complex design,logic design,integrated circuit design,chip,three dimensional
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要