Amphiphilic comblike polymers enhance the colloidal stability of Fe3O4 nanoparticles

Colloids and Surfaces B: Biointerfaces(2010)

引用 32|浏览19
暂无评分
摘要
Stable colloidal dispersions of magnetite (Fe3O4) nanoparticles (MNPs) were obtained with the inclusion of an amphiphilic comblike polyethylene glycol derivative (CL-PEG) as an amphiphilic polymeric surfactant. Both the size and morphology of the resulting CL-PEG-modified MNPs could be controlled and were characterized by transmission electron microscopy (TEM). The interaction between MNPs and CL-PEG was confirmed by the presence of characteristic infrared absorption peaks, and the colloidal stability of the nanoparticle dispersion in water was evaluated by long-term observation of the dispersion using UV-visible spectroscopy. SQUID measurements confirmed the magnetization of CL-PEG-modified MNPs. The zeta potential of the CL-PEG-modified MNPs showed a dramatic conversion from positive to negative in response to the pH of the surrounding aqueous medium due to the presence of carboxyl groups at the surface. These carboxyl groups can be used to functionalize the MNPs with biomolecules for biotechnological applications. However, regardless of surface electrostatics, the flexible, hydrophilic side chains of CL-PEG-modified MNPs prevented the approach of adjacent nanoparticles, thereby resisting aggregation and resulting in a stable aqueous colloid. The cytotoxicity of MNPs and CL-PEG-modified MNPs was evaluated by a MTT assay.
更多
查看译文
关键词
Amphiphilic,Chemical coprecipitation,Colloidal stability,Magnetite,Nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要