Re-ranking for joint named-entity recognition and linking.


引用 159|浏览178
ABSTRACTRecognizing names and linking them to structured data is a fundamental task in text analysis. Existing approaches typically perform these two steps using a pipeline architecture: they use a Named-Entity Recognition (NER) system to find the boundaries of mentions in text, and an Entity Linking (EL) system to connect the mentions to entries in structured or semi-structured repositories like Wikipedia. However, the two tasks are tightly coupled, and each type of system can benefit significantly from the kind of information provided by the other. We present a joint model for NER and EL, called NEREL, that takes a large set of candidate mentions from typical NER systems and a large set of candidate entity links from EL systems, and ranks the candidate mention-entity pairs together to make joint predictions. In NER and EL experiments across three datasets, NEREL significantly outperforms or comes close to the performance of two state-of-the-art NER systems, and it outperforms 6 competing EL systems. On the benchmark MSNBC dataset, NEREL provides a 60% reduction in error over the next-best NER system and a 68% reduction in error over the next-best EL system.
AI 理解论文