Counting And Detecting Small Subgraphs Via Equations

SIAM Journal on Discrete Mathematics(2013)

引用 29|浏览7
暂无评分
摘要
We present a general technique for detecting and counting small subgraphs. It consists of forming special linear combinations of the numbers of occurrences of different induced subgraphs of fixed size in a graph. These combinations can be efficiently computed by rectangular matrix multiplication.Our two main results utilizing the technique are as follows. Let H be a fixed graph with k vertices and an independent set of size s.1. Detecting if an n-vertex graph contains a (not necessarily induced) subgraph isomorphic to H can be done in time O(n(omega(inverte right perpendicular(k-s)/2inverted letf perpendicular,1,1 right perpendicular(k- s)/2inverted letf perpendicular))), where omega(p, q, r) is the exponent of fast arithmetic matrix multiplication of an n(p) x n(q) matrix by an n(q) x n(r) matrix.2. When s = 2, counting the number of (not necessarily induced) subgraphs isomorphic to H can be done in the same time, i.e., in time O(n(omega(inverted right perpendicular(k-2)/2inverted left perpendicular,1, inverted right perpendicular(k-2)/2inverted left perpendicular))).It follows in particular that we can count the number of subgraphs isomorphic to any H on four vertices that is not K-4 in time O(n(omega)), where omega = omega(1, 1, 1) is known to be smaller than 2.373. Similarly, we can count the number of subgraphs isomorphic to any H on five vertices that is not K-5 in time O(n(omega(2,1,1))), where omega(2, 1, 1) is known to be smaller than 3.257. Finally, we derive input-sensitive variants of our time upper bounds. They are partially expressed in terms of the number m of edges of the input graph and do not rely on fast matrix multiplication.
更多
查看译文
关键词
subgraph and induced subgraph isomorphism,counting and detection of subgraphs,linear equations,exact algorithms,rectangular matrix multiplication
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要