Gravitational-wave physics and astronomy in the 2020s and 2030s

M. Bailes, B. K. Berger, P. R. Brady, M. Branchesi, K. Danzmann, M. Evans, K. Holley-Bockelmann, B. R. Iyer, T. Kajita, S. Katsanevas, M. Kramer, A. Lazzarini, L. Lehner, G. Losurdo, H. Lück, D. E. McClelland, M. A. McLaughlin, M. Punturo, S. Ransom, S. Raychaudhury,D. H. Reitze, F. Ricci, S. Rowan, Y. Saito, G. H. Sanders, B. S. Sathyaprakash, B. F. Schutz, A. Sesana, H. Shinkai, X. Siemens, D. H. Shoemaker, J. Thorpe, J. F. J. van den Brand, S. Vitale

Nature Reviews Physics(2021)

引用 3|浏览2
暂无评分
摘要
The 100 years since the publication of Albert Einstein’s theory of general relativity saw significant development of the understanding of the theory, the identification of potential astrophysical sources of sufficiently strong gravitational waves and development of key technologies for gravitational-wave detectors. In 2015, the first gravitational-wave signals were detected by the two US Advanced LIGO instruments. In 2017, Advanced LIGO and the European Advanced Virgo detectors pinpointed a binary neutron star coalescence that was also seen across the electromagnetic spectrum. The field of gravitational-wave astronomy is just starting, and this Roadmap of future developments surveys the potential for growth in bandwidth and sensitivity of future gravitational-wave detectors, and discusses the science results anticipated to come from upcoming instruments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要