Chronic low dose ovine corticotropin releasing factor or urocortin II into the rostral dorsal raphe alters exploratory behavior and serotonergic gene expression in specific subregions of the dorsal raphe

Neuroscience(2007)

引用 38|浏览4
暂无评分
摘要
Corticotropin releasing factor (CRF) family peptides play key roles in integrating neural responses to stress. Both major CRF receptors have been pharmacologically identified in the dorsal raphe nucleus (DRN), a stress sensitive and internally heterogeneous nucleus supplying many forebrain regions with serotonergic input. Despite the involvement of chronic stress and serotonergic dysfunction in human mood and anxiety disorders, little is known about the effects of chronic CRF receptor activation on the DRN. We infused ovine CRF (1 ng/h), urocortin II (UCNII, 1 ng/h), or vehicle alone into rat DRN over 6 days. During infusion, animals were allowed to freely explore an open field for 15 min on each of 2 days, with the addition of a novel object on the second day. Following behavioral testing, 5-HT1A, 5-HT1B, 5-HT transporter (SERT), and tryptophan hydroxylase-2 (Tph2) expression was examined through the DRN by in situ hybridization. Ovine CRF infusion resulted in significantly decreased novel object touches, climbs, as well as increased latency to first novel object contact. UCNII had a similar but less dramatic effect, decreasing only climbing behavior. Both ovine CRF and UCNII blunted the decrease in corner time expected on re-exposure to the open field. Both peptides also produced regionally specific changes in gene expression: 5-HT1A expression was increased 30% in the mid-rostral ventromedial DRN, while SERT was decreased by 30% in the mid-caudal shell dorsomedial DRN. There also appeared to be a shift in the relative level of Tph2 expression between the ventromedial and core dorsomedial DRN at the mid-rostral level. Changes in 5-HT1A, SERT, and relative Tph2 mRNA abundance were correlated with novel object exploration. These findings suggest chronic intra-DRN administration of CRF agonists decreases exploratory behavior, while producing subregionally limited changes in serotonergic gene expression. These studies may be relevant to mechanisms underlying behavioral changes after chronic stress.
更多
查看译文
关键词
dorsomedial,in situ hybridization histochemistry,open field,novel object,5-HT transporter,ventromedial
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要