\bf DCAS-Based Concurrent Deques

Theory of Computing Systems(2002)

引用 15|浏览20
暂无评分
摘要
. The computer industry is currently examining the use of strong synchronization operations such as double compare-and-swap (DCAS) as a means of supporting non-blocking synchronization on future multiprocessor machines. However, before such a strong primitive will be incorporated into hardware design, its utility needs to be proven by developing a body of effective non-blocking data structures using DCAS. As part of this effort, we present two new linearizable non-blocking implementations of concurrent deques using the DCAS operation. The first uses an array representation, and improves on previous algorithms by allowing uninterrupted concurrent access to both ends of the deque while correctly handling the difficult boundary cases when the deque is empty or full. The second uses a linked-list representation, and is the first non-blocking, dynamically-sized deque implementation. It too allows uninterrupted concurrent access to both ends of the deque. We have proved these algorithms correct with the aid of a mechanical theorem prover; we describe these proofs in the paper.
更多
查看译文
关键词
Proof Obligation,Transactional Memory,Linearization Point,Abstraction Function,Left Pointer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要