Higher Order Contractive Auto-Encoder

ECML PKDD'11: Proceedings of the 2011 European conference on Machine learning and knowledge discovery in databases - Volume Part II(2011)

引用 275|浏览300
暂无评分
摘要
We propose a novel regularizer when training an auto-encoder for unsupervised feature extraction. We explicitly encourage the latent representation to contract the input space by regularizing the norm of the Jacobian (analytically) and the Hessian (stochastically) of the encoder's output with respect to its input, at the training points. While the penalty on the Jacobian's norm ensures robustness to tiny corruption of samples in the input space, constraining the norm of the Hessian extends this robustness when moving further away from the sample. From a manifold learning perspective, balancing this regularization with the auto-encoder's reconstruction objective yields a representation that varies most when moving along the data manifold in input space, and is most insensitive in directions orthogonal to the manifold. The second order regularization, using the Hessian, penalizes curvature, and thus favors smooth manifold. We show that our proposed technique, while remaining computationally efficient, yields representations that are significantly better suited for initializing deep architectures than previously proposed approaches, beating state-of-the-art performance on a number of datasets.
更多
查看译文
关键词
Unsupervised feature learning,deep learning,manifold
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要