Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection

international conference on machine learning(2011)

引用 515|浏览156
暂无评分
摘要
We study the problem of selecting a subset of k random variables from a large set, in order to obtain the best linear prediction of another variable of interest. This problem can be viewed in the context of both feature selection and sparse approximation. We analyze the performance of widely used greedy heuristics, using insights from the maximization of submodular functions and spectral analysis. We introduce the submodularity ratio as a key quantity to help understand why greedy algorithms perform well even when the variables are highly correlated. Using our techniques, we obtain the strongest known approximation guarantees for this problem, both in terms of the submodularity ratio and the smallest k-sparse eigenvalue of the covariance matrix. We further demonstrate the wide applicability of our techniques by analyzing greedy algorithms for the dictionary selection problem, and significantly improve the previously known guarantees. Our theoretical analysis is complemented by experiments on real-world and synthetic data sets; the experiments show that the submodularity ratio is a stronger predictor of the performance of greedy algorithms than other spectral parameters.
更多
查看译文
关键词
greedy heuristic,covariance matrix,feature selection,synthetic data,data structure,random variable,sparse approximation,greedy algorithm
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要