Enantioselective Intramolecular Cyclopropanations Of Allylic And Homoallylic Diazoacetates And Diazoacetamides Using Chiral Dirhodium(Ii) Carboxamide Catalysts

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(1995)

引用 263|浏览6
暂无评分
摘要
Diazo decomposition of allylic and homoallylic diazoacetates 10a-p and 22a-j catalyzed by chiral dirhodium(II) tetrakis[methyl 2-pyrrolidone-5(S)-carboxylate], Rh-2(5S-MEPY)(4) (7), and its enantiomer, Rh-2(5R-MEPY)(4) (8), produces the corresponding intramolecular cyclopropanation products 11a-p and 23a-j in good to excellent yields and with exceptional enantioselectivity. Higher enantiocontrol is observed with allylic diazoacetates than with their homoallylic counterparts, but allylic diazoacetates are subject to greater variations in enantioselectivities with changes in substitution patterns on the carbon-carbon double bond. For example, the enantioselectivities in the intramolecular cyclopropanations of 3-alkyl/aryl-2(Z)-alken-1-yl diazoacetates are generally greater than or equal to 94%, whereas the cyclizations of the homologous 4-alkyl/aryl-3(Z)-alken-1-yl diazoacetates are typically in the range of 70-90% ee. The corresponding 3-alkyl/aryl-2(E)-alken-1-yl and 4-alkyl/aryl-3(E)-alken-1-yl diazoacetates undergo cyclization with slightly lower ee's (54-85%). Although the Rh-2(5S-MEPY)(4)-catalyzed cyclization of the 2-methallyl diazoacetate 10c proceeds with only 7% ee, alternative chiral dirhodium(II) catalysts, including those with methyl N-acylimidazolidin-2-one-4(S)-carboxylate ligands such as Rh-2(4S-MACIM)(4) (14) and Rh-2(4S-MPAIM)(4) (15), may be employed to increase the level of enantiocontrol to 78 and 65%, respectively. Some allylic diazoacetamides also undergo highly enantioselective cyclization to form cyclopropyl lactams as illustrated by the diazo decomposition of N-allyl diazoacetamide (19) in the presence of dirhodium(II) tetrakis[methyl 2-oxazolidinone-4(S)-carboxylate], Rh-2(4S-MEOX)(4), to give the 3-azabicydo[3.1.0]hexan-2-one 20 in 98% ee. The absolute configuration and the level of enantiocontrol in these intramolecular cyclopropanations have been interpreted by a transition state model in which the important determinants are (i) the preferred conformation about the rhodium-carbon bond; (ii) the trajectory of approach of the double bond to the metallocarbene center; and (iii) the orientation of the double bond with respect to the chiral face of the catalyst.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要