The Risk-Utility Tradeoff for IP Address Truncation

CCS08: 15th ACM Conference on Computer and Communications Security 2008 Alexandria Virginia USA October, 2008(2009)

引用 17|浏览27
暂无评分
摘要
Network operators are reluctant to share traffic data due to security and privacy concerns. Consequently, there is a lack of publicly available traces for validating and generalizing the latest results in network and security research. Anonymization is a possible solution in this context; however, it is unclear how the sanitization of data preserves characteristics important for traffic analysis. In addition, the privacy-preserving property of state-of-the-art IP address anonymization techniques has come into question by recent attacks that successfully identified a large number of hosts in anonymized traces. In this paper, we examine the tradeoff between data utility for anomaly detection and the risk of host identification for IP address truncation. Specifically, we analyze three weeks of unsampled and non-anonymized network traces from a medium-sized backbone network to assess data utility. The risk of de-anonymizing individual IP addresses is formally evaluated, using a metric based on conditional entropy. Our results indicate that truncation effectively prevents host identification but degrades the utility of data for anomaly detection. However, the degree of degradation depends on the metric used and whether network-internal or external addresses are considered. Entropy metrics are more resistant to truncation than unique counts and the detection quality of anomalies degrades much faster in internal addresses than in external addresses. In particular, the usefulness of internal address counts is lost even for truncation of only 4 bits whereas utility of external address entropy is virtually unchanged even for truncation of 20 bits.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要