Large-scale fluid simulation using velocity-vorticity domain decomposition

ACM Trans. Graph.(2012)

引用 62|浏览159
暂无评分
摘要
Simulating fluids in large-scale scenes with appreciable quality using state-of-the-art methods can lead to high memory and compute requirements. Since memory requirements are proportional to the product of domain dimensions, simulation performance is limited by memory access, as solvers for elliptic problems are not compute-bound on modern systems. This is a significant concern for large-scale scenes. To reduce the memory footprint and memory/compute ratio, vortex singularity bases can be used. Though they form a compact bases for incompressible vector fields, robust and efficient modeling of nonrigid obstacles and free-surfaces can be challenging with these methods. We propose a hybrid domain decomposition approach that couples Eulerian velocity-based simulations with vortex singularity simulations. Our formulation reduces memory footprint by using smaller Eulerian domains with compact vortex bases, thereby improving the memory/compute ratio, and simulation performance by more than 1000x for single phase flows as well as significant improvements for free-surface scenes. Coupling these two heterogeneous methods also affords flexibility in using the most appropriate method for modeling different scene features, as well as allowing robust interaction of vortex methods with free-surfaces and nonrigid obstacles.
更多
查看译文
关键词
large-scale scene,compact vortex base,high memory,nonrigid obstacle,memory footprint,large-scale fluid simulation,vortex singularity base,memory requirement,vortex method,memory access,velocity-vorticity domain decomposition,simulation performance,free surface,computational fluid dynamics,vector field,fluid simulation,domain decomposition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要