AI helps you reading Science
A comparison of tight generalization error bounds
ICML, pp.409-416, (2005)
EI
Keywords
Abstract
We investigate the empirical applicability of several bounds (a number of which are new) on the true error rate of learned classifiers which hold whenever the examples are chosen independently at random from a fixed distribution.The collection of tricks we use includes:1. A technique using unlabeled data for a tight derandomization of ran...More
Code:
Data:
Tags
Comments
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn