Finite Alphabet Iterative Decoders-Part Ii: Towards Guaranteed Error Correction Of Ldpc Codes Via Iterative Decoder Diversity

IEEE TRANSACTIONS ON COMMUNICATIONS(2013)

引用 27|浏览9
暂无评分
摘要
Recently, we introduced a new class of finite alphabet iterative decoders (FAIDs) for low-density parity-check (LDPC) codes. These decoders are capable of surpassing belief propagation (BP) in the error floor region on the binary symmetric channel (BSC) with much lower complexity. In this paper, we introduce a novel scheme with the objective of guaranteeing the correction of a given and potentially large number of errors on column-weight-three LDPC codes. The proposed scheme uses a plurality of FAIDs which collectively correct more error patterns than a single FAID on a given code. The collection of FAIDs utilized by the scheme is judiciously chosen to ensure that individual decoders have different decoding dynamics and correct different error patterns. Consequently, they can collectively correct a diverse set of error patterns, which is referred to as decoder diversity. We provide a systematic method to generate the set of FAIDs for decoder diversity on a given code based on the knowledge of the most harmful trapping sets present in the code. Using the well-known column-weight-three (155, 64) Tanner code with d(min) = 20 as an example, we describe the method in detail and show, by means of exhaustive simulation, that the guaranteed error correction capability on short length LDPC codes can be significantly increased with decoder diversity.
更多
查看译文
关键词
Low-density parity-check codes, finite alphabet iterative decoder, error floor, guaranteed error correction, decoder diversity, Tanner QC-LDPC code, trapping sets
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要