In silico generation of alternative hypotheses using causal mapping (CMAP).

PLOS ONE(2009)

引用 7|浏览15
暂无评分
摘要
Previously, we introduced causal mapping (CMAP) as an easy to use systems biology tool for studying the behavior of biological processes that occur at the cellular and molecular level. CMAP is a coarse-grained graphical modeling approach in which the system of interest is modeled as an interaction map between functional elements of the system, in a manner similar to portrayals of signaling pathways commonly used by molecular cell biologists. CMAP describes details of the interactions while maintaining the simplicity of other qualitative methods (e.g., Boolean networks).In this paper, we use the CMAP methodology as a tool for generating hypotheses about the mechanisms that regulate molecular and cellular systems. Furthermore, our approach allows competing hypotheses to be ranked according to a fitness index and suggests experimental tests to distinguish competing high fitness hypotheses. To motivate the CMAP as a hypotheses generating tool and demonstrate the methodology, we first apply this protocol to a simple test-case of a three-element signaling module. Our methods are next applied to the more complex phenomenon of cortical oscillations observed in spreading cells. This analysis produces two high fitness hypotheses for the mechanism that underlies this dynamic behavior and suggests experiments to distinguish the hypotheses. The method can be widely applied to other cellular systems to generate and compare alternative hypotheses based on experimentally observed data and using computer simulations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要