Quantification of mRNA encoding cytokines and chemokines and assessment of ciliary function in canine tracheal epithelium during infection with canine respiratory coronavirus (CRCoV)

Veterinary Immunology and Immunopathology(2009)

引用 19|浏览17
暂无评分
摘要
One of the first lines of defence against viral infection is the innate immune response and the induction of antiviral type I interferons (IFNs). However some viruses, including the group 2 coronaviruses, have evolved mechanisms to overcome or circumvent the host antiviral response. Canine respiratory coronavirus (CRCoV) has previously been shown to have a widespread international presence and has been implicated in outbreaks of canine infectious respiratory disease (CIRD). This study aimed to quantify pro-inflammatory cytokine mRNAs following infection of canine air-interface tracheal cultures with CRCoV. Within this system, immunohistochemistry identified ciliated epithelial and goblet cells as positive for CRCoV, identical to naturally infected cases, thus the data obtained would be fully transferable to the situation in vivo. An assay of ciliary function was used to assess potential effects of CRCoV on the mucociliary system. CRCoV was shown to reduce the mRNA levels of the pro-inflammatory cytokines TNF-α and IL-6 and the chemokine IL-8 during the 72h post-inoculation. The mechanism for this is unknown, however the suppression of a key antiviral strategy during a period of physiologic and immunological stress, such as on entry to a kennel, could potentially predispose a dog to further pathogenic challenge and the development of respiratory disease.
更多
查看译文
关键词
Canine respiratory coronavirus,Air-interface tracheal organ culture,Epithelial innate immune response,Cytokine,Real-time quantitative RT-PCR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要