Fast and effective placement and routing directed high-level synthesis for FPGAs.

FPGA(2014)

引用 48|浏览28
暂无评分
摘要
ABSTRACTAchievable frequency (fmax) is a widely used input constraint for designs targeting Field-Programmable Gate Arrays (FPGA), because of its impact on design latency and throughput. Fmax is limited by critical path delay, which is highly influenced by lower-level details of the circuit implementation such as technology mapping, placement and routing. However, for high-level synthesis~(HLS) design flows, it is challenging to evaluate the real critical delay at the behavioral level. Current HLS flows typically use module pre-characterization for delay estimates. However, we will demonstrate that such delay estimates are not sufficient to obtain high fmax and also minimize total execution latency. In this paper, we introduce a new HLS flow that integrates with Altera's Quartus synthesis and fast placement and routing (PAR) tool to obtain realistic post-PAR delay estimates. This integration enables an iterative flow that improves the performance of the design with both behavioral-level and circuit-level optimizations using realistic delay information. We demonstrate our HLS flow produces up to 24% (on average 20%) improvement in fmax and upto 22% (on average 20%) improvement in execution latency. Furthermore, results demonstrate that our flow is able to achieve from 65% to 91% of the theoretical fmax on Stratix IV devices (550MHz).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要