Markov Model Document Retrieval
International Conference on Document Analysis and Recognition(2003)
摘要
This paper presents a new probabilistic approachto document retrieval based on the assumption thata Markov process can explain the process by whichhumans rank the relevance of documents to queries.The model ranks documents for retrieval based on theirprobability of relevance. Two training methods are presented. The model is compared with Latent Semantic Analysis (LSA) on two publicly available databases.The results show that the new algorithm achieves Precision/Recall performance equivalent to or better than LSA.
更多查看译文
关键词
available databases,recall performance equivalent,new probabilistic approachto document,new algorithm,training method,Latent Semantic Analysis,assumption thata Markov process,Markov Model Document Retrieval
AI 理解论文
溯源树
样例

生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn