Control in Rough-Terrain

Springer Tracts in Advanced Robotics3D-Position Tracking and Control for All-Terrain Robots(2008)

引用 3|浏览8
暂无评分
摘要
For wheeled rovers, motion optimization is generally related to minimizing wheel slip.Minimizing slip not only limits odometric error but also increases the robot’s climbing performance and traction. Different approaches to slip minimization in rough terrain can be found in the literature. The controller developed in [69] derives from the Anti-lock Breaking System (ABS) and uses the information of wheel slip to correct individual wheel speed. Reference [13] proposes a velocity synchronization algorithm, which minimizes the effect of the wheels “fighting” against each other. The first step of the approach consists in detecting which of the wheels are deviating significantly from the nominal velocity profile. Then a voting scheme is used to compute the required velocity set point change for each individual wheel. Because such methods adapt the wheel speeds when slip has already occurred, they are referred to as reactive approaches.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要