Multiplexing packets with arbitrary deadlines in bounded buffers

ALGORITHM THEORY - SWAT 2006, PROCEEDINGS(2006)

引用 11|浏览1
暂无评分
摘要
We study the online problem of multiplexing packets with arbitrary deadlines in bounded multi-buffer switch. In this model, a switch consists of m input buffers each with bounded capacity B and one output port. Each arriving packet is associated with a value and a deadline that specifies the time limit till the packet can be transmitted. At each time step the switch can select any non-empty buffer and transmit one packet from that buffer. In the preemptive model, stored packets may be preempted from their buffers due to lack of buffer space or discarded due to the violation of the deadline constraints. If preemption is not allowed, every packet accepted and stored in the buffer must be transmitted before its deadline has expired. The goal is to maximize the benefit of the packets transmitted by their deadlines. To date, most models for packets with deadlines assumed a single buffer. To the best of our knowledge this is the first time a bounded multi-buffer switch is used with arbitrary deadline constraints Our main result is a 9.82-competitive deterministic algorithm for packets with arbitrary values and deadlines. Note that the greedy algorithm is not competitive. For the non-preemptive model we present a 2-competitive deterministic algorithm for the unit value packets. For arbitrary values we present a randomized algorithm whose competitiveness is logarithmic in the ratio between the largest and the smallest value of the packets in the sequence
更多
查看译文
关键词
deadline constraint,single buffer,arbitrary value,arbitrary deadline constraint,deterministic algorithm,arbitrary deadline,multiplexing packet,non-empty buffer,bounded multi-buffer switch,2-competitive deterministic algorithm,bounded buffer,buffer space,greedy algorithm,randomized algorithm
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要