Efficient Simulation of Power Grids

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems(2010)

引用 21|浏览0
暂无评分
摘要
Modern deep sub-micron ultra-large scale integration designs with hundreds of millions of devices require huge grids for power distribution. Such grids, operating with decreasing power supply voltages, are a design limiting factor and accurate analysis of their behavior is of paramount importance as any voltage drops can seriously impact performance or functionality. As power grid models have millions of unknowns, highly optimized special-purpose simulation tools are required to handle the time and memory complexity of solving for their dynamic behavior. In this paper, we propose a hierarchical matrix representation of the power grid model that is both space and time efficient. With this representation, reduced storage matrix factors are efficiently computed and applied in the analysis at every time-step of the simulation. Results show an almost linear complexity growth, namely O(n loga(n)), for some small constant a, in both space and time, when using this matrix representation. Comparisons of our academic implementation with production-quality code prove this method to be very efficient when dealing with the simulation of large power grid models.
更多
查看译文
关键词
ULSI,circuit complexity,integrated circuit design,integrated circuit modelling,matrix algebra,deep submicron ultralarge scale integration designs,hierarchical matrix representation,limiting factor,linear complexity growth,power distribution,power grid models,power grid simulation,power supply voltages,production-quality code,storage matrix factor reduction,voltage drops,Cholesky decomposition,hierarchical matrices,power-grid analysis,power-grid simulation,power-grid-modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要