基本信息
浏览量:153

个人简介
Research Interests
Numerical methods for optimization and optimal control problems. The dimension of today's data-related optimization problems can easily reach the order of billion or more. Dr. Qu investigates more scalable modern optimization methods, including randomized coordinate descent methods (serial, parallel, distributed, accelerated variants), stochastic gradient methods (mini-batch, variance reduction) and primal-dual methods. She is equally interested in exploring the power of randomization in the attenuation of the curse of dimensionality for the solution of optimal control problems.
Numerical methods for optimization and optimal control problems. The dimension of today's data-related optimization problems can easily reach the order of billion or more. Dr. Qu investigates more scalable modern optimization methods, including randomized coordinate descent methods (serial, parallel, distributed, accelerated variants), stochastic gradient methods (mini-batch, variance reduction) and primal-dual methods. She is equally interested in exploring the power of randomization in the attenuation of the curse of dimensionality for the solution of optimal control problems.
研究兴趣
论文共 54 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
arxiv(2024)
引用0浏览0引用
0
0
SIAM Journal on Optimizationno. 1 (2024): 127-162
arxiv(2024)
引用0浏览0引用
0
0
openalex(2023)
Biophotonics Congress Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN) (2023)
加载更多
作者统计
#Papers: 54
#Citation: 1849
H-Index: 23
G-Index: 41
Sociability: 4
Diversity: 3
Activity: 11
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn