基本信息
浏览量:766

个人简介
Vikas Sindhwani is Research Scientist in the Google Brain team in New York where he leads a research group focused on solving a range of perception, learning and control problems arising in Robotics. His interests are broadly in core mathematical foundations of statistical learning, and in end-to-end design aspects of building large-scale, robust machine intelligence systems. He received the best paper award at Uncertainty in Artificial Intelligence (UAI) 2013, the IBM Pat Goldberg Memorial Award in 2014, and was co-winner of the Knowledge Discovery and Data Mining (KDD) Cup in 2009. He serves on the editorial board of IEEE Transactions on Pattern Analysis and Machine Intelligence, and has been area chair and senior program committee member for International Conference on Learning Representations (ICLR) and Knowedge Discovery and Data Mining (KDD). He previously led a team of researchers in the Machine Learning group at IBM Research, NY.
研究兴趣
论文共 128 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Robotics: Science and Systems (2023)
引用0浏览0EI引用
0
0
David B. D'Ambrosio,Navdeep Jaitly,Vikas Sindhwani, Ken Oslund,Peng Xu,Nevena Lazic, Anish Shankar, Tianli Ding, Jonathan Abelian,Erwin Coumans, Gus Kouretas, Thinh Nguyen,
Robotics: Science and Systems (2023)
引用0浏览0EI引用
0
0
Andy Zeng,Maria Attarian,Brian Ichter, Krzysztof Marcin Choromanski,Adrian Wong,Stefan Welker,Federico Tombari, Aveek Purohit,Michael S. Ryoo,Vikas Sindhwani,Johnny Lee,Vincent Vanhoucke,
ICLR (2023)
引用0浏览0EI引用
0
0
Saminda Abeyruwan, Alex Bewley,Nicholas M. Boffi, Krzysztof Choromanski,David D'Ambrosio, Deepali Jain, Pannag Sanketi, Anish Shankar,Vikas Sindhwani,Sumeet Singh,Jean-Jacques Slotine,Stephen Tu
L4DC (2023): 851-863
引用0浏览0EI引用
0
0
Xuesu Xiao,Tingnan Zhang, Krzysztof Choromanski,Edward Lee,Anthony Francis,Jake Varley,Stephen Tu,Sumeet Singh, Peng Xu,Fei Xia, Sven Mikael Persson,Dmitry Kalashnikov,
arxiv(2022)
引用0浏览0EI引用
0
0
arxiv(2022)
引用0浏览0引用
0
0
加载更多
作者统计
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn