基本信息
浏览量:3385

个人简介
His research focuses on efficient deep learning computing. He proposed “deep compression” technique that can reduce neural network size by an order of magnitude without losing accuracy, and the hardware implementation “efficient inference engine” that first exploited pruning and weight sparsity in deep learning accelerators. His team’s work on hardware-aware neural architecture search (ProxylessNAS, Once-for-All Network (OFA), MCUNet) was integrated in Facebook, Amazon, Microsoft, Intel, SONY, received the first place in six low-power computer vision contest awards in flagship AI conferences. Song received Best Paper awards at ICLR and FPGA, multiple faculty awards from Amazon, SONY, Facebook, NVIDIA and Samsung. Song was named “35 Innovators Under 35” by MIT Technology Review for his contribution on “deep compression” technique that “lets powerful artificial intelligence (AI) programs run more efficiently on low-power mobile devices.” Song received the NSF CAREER Award for “efficient algorithms and hardware for accelerated machine learning” and the IEEE “AIs 10 to Watch: The Future of AI” award.
研究兴趣
论文共 188 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Hanrui Wang, Pengyu Liu,Bochen Tan, Yilian Liu,Jiaqi Gu, David Z. Pan,Jason Cong, Umut Acar,Song Han
arxiv(2023)
引用0浏览0引用
0
0
Zhiding Jiang, Zhixin Song,Jinglei Cheng,Zichang He, Ji Liu,Hanrui Wang, Ruiyang Qin, Yiru Wang,Song Han,Xuehai Qian,Yiyu Shi
2023 60TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC (2023)
引用0浏览0引用
0
0
Hanqing Zhu,Jiaqi Gu,Hanrui Wang,Zixuan Jiang,Zhekai Zhang, Rongxin Tang,Chenghao Feng,Song Han,Ray T. Chen, David Z. Pan
CoRR (2023)
引用0浏览0EI引用
0
0
IEEE Solid-State Circuits Letters (2023): 169-172
引用0浏览0EIWOS引用
0
0
CoRR (2023)
引用0浏览0EI引用
0
0
CoRR (2023)
引用0浏览0EI引用
0
0
CoRR (2023)
引用0浏览0EI引用
0
0
arxiv(2023)
引用0浏览0引用
0
0
加载更多
作者统计
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn