Experience
    Education
    Bio
    For two decades, Rebecca Richards-Kortum has focused on translating research that integrates advances in nanotechnology and molecular imaging with microfabrication technologies to develop optical imaging systems that are inexpensive, portable, and provide point-of-care diagnosis. This basic and translational research is highly collaborative and has led to new technologies to improve the early detection of cancers and other diseases, especially in impoverished settings. Microelectromechanical systems (MEMS) use micro-scale technology to design low-cost, reusable platforms for point-of-care (POC) diagnostics. When used with contrast agents, these rugged and portable optical imaging systems detect molecular signatures of pre-cancer, assess tumor margins, and monitor a patient’s response to therapy. Current systems are being tested and applied through multidisciplinary collaborations with clinicians and researchers at Rice, the UT M.D. Anderson Cancer Center, UT Health Science Center-Houston, UT at Austin, the University of Arizona, and the British Columbia Cancer Agency. Over the past few years, Richards-Kortum and collaborators have translated these technologies from North America to both low- and medium-resource developing countries (Botswana, India, Taiwan, Mexico, and Brazil). Richards-Kortum’s research has led to the development of 29 patents. She is author of the textbook Biomedical Engineering for Global Health published by Cambridge University Press (2010), more than 230 refereed research papers and 11 book chapters. Her teaching programs, research and collaborations have been supported by generous grants from the National Cancer Institute, National Institutes of Health, National Science Foundation, U.S. Department of Defense, Howard Hughes Medical Institute, Bill & Melinda Gates Foundation, Whitaker Foundation, and the Virginia and L.E. Simmons Family Foundation. Richards-Kortum is a member of both the National Academy of Sciences (2016) and the National Academy of Engineering (2008). She is a member of the American Academy of Arts and Sciences (2015), a member of the U.S. National Academy of Engineering (2008), a member of the National Academies Committee on Conceptual Framework for New Science Education Standards (2010-2012), and an inaugural member of the National Advisory Council for Biomedical Imaging and Bioengineering for the National Institutes of Health (2002-2007). She is a fellow of the American Institute for Medical and Biological Engineering (2000), of the American Association for the Advancement of Science (2008), of the Biomedical Engineering Society (2008), of the Optical Society of America (2014), and of the National Academy of Inventors (2014). She was named a Howard Hughes Medical Institute (HHMI) Professor (2002) and received a Professor Renewal grant from HHMI (2006) to establish and expand the undergraduate education program Beyond Traditional Borders (BTB). In 2012, the BTB program was chosen as a model program by Science magazine and awarded the Science Prize for Inquiry-Based Instruction; and in 2013, the hands-on engineering education program was awarded the Lemelson-MIT Award for Global Innovation for bringing life-saving health solutions to the developing world. Other awards Richards-Kortum has received for her efforts in research and education include: the Y.C. Fung Young Investigator Award from the American Society of Mechanical Engineers (1999), the Presidential Young Investigator (1991) and Presidential Faculty Fellow (1992) awards from the National Science Foundation, the Becton Dickinson Career Achievement Award from the Association for the Advancement of Medical Instrumentation (1992), the Sharon Keillor Award for Women in Engineering Education (2004) and the Chester F. Carlson Award (2007) from the American Society for Engineering Education, the Vice President Recognition Award by IEEE (2008), and she was named the Pritzker Distinguished Scientist and Lecturer of the Biomedical Engineering Society's 2010 Annual Meeting. Her recent contributions to advancing the applications of optics in disease diagnostics have been recognized by the Celebrating Women in Science Award (2011) from BioHouston, Inc., the Women Leaders in Medicine Award by the American Medical Student Association (2012), and the Michael S. Feld Biophotonics Award by the The Optical Society of America (2014). Richards-Kortum's excellence in teaching and educational program development and implementation at Rice have been recognized by the George R. Brown Award for Superior Teaching (2014) by the Association of Rice Alumni.