基本信息
浏览量:28

个人简介
My research is on developing nonparametric, contextual reasoning models for program synthesis and question answering on knowledge graphs and text. These models are accurate, controllable (debuggable), offer interpretable predictions and can seamlessly reason with newly arriving information. Recently, I have been working on neuro-symbolic advancements to an old nonparametric framework initially proposed in classical AI - Case-based Reasoning. In a CBR framework, the reasoning pattern required to solve a problem are derived from the reasoning patterns of other similar problems. A CBR framework provides a natural way of extending K-nearest neighbor approaches for classification to more complex problems such as program synthesis and question answering. My research interests also include developing models for open-domain QA, building procedural knowledge graphs from text and common-sense reasoning.
研究兴趣
论文共 34 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
CoRR (2023)
引用0浏览0EI引用
0
0
ACL 2022 (2022)
引用0浏览0引用
0
0
Dung Thai,Srinivas Ravishankar, Ibrahim Abdelaziz,Mudit Chaudhary,Nandana Mihindukulasooriya,Tahira Naseem,Rajarshi Das, Pavan Kapanipathi, Achille Fokoue,Andrew McCallum
arxiv(2022)
引用0浏览0引用
0
0
加载更多
作者统计
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn