基本信息
浏览量:53

个人简介
My favourite past projects have included:
- Developing a unified method for promoting cooperation and communication among in multi-agent reinforcement learning (RL) by creating an intrinsic reward based on assessing causal influence between agents.
- Improving deep generative models by using human facial expression responses to samples from the model as a training signal.
- Effectively combining supervised learning and RL to train generative sequence models.
- Using multi-task learning techniques to personalize machine learning models and improve accuracy in predicting next day stress, happiness and health.
- Developing a unified method for promoting cooperation and communication among in multi-agent reinforcement learning (RL) by creating an intrinsic reward based on assessing causal influence between agents.
- Improving deep generative models by using human facial expression responses to samples from the model as a training signal.
- Effectively combining supervised learning and RL to train generative sequence models.
- Using multi-task learning techniques to personalize machine learning models and improve accuracy in predicting next day stress, happiness and health.
研究兴趣
论文共 48 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
arxiv(2023)
引用0浏览0引用
0
0
arxiv(2022)
引用0浏览0引用
0
0
Peter de Looff,Remko Duursma,Matthijs Noordzij,Sara Taylor,Natasha Jaques, Floortje Scheepers,Kees de Schepper,Saskia Koldijk
Arnaud Fickinger,Natasha Jaques, Samyak Parajuli, Michael Chang,Nicholas Rhinehart,Glen Berseth,Stuart Russell,Sergey Levine
arxiv(2021)
引用0浏览0EI引用
0
0
arxiv(2021)
引用0浏览0EI引用
0
0
加载更多
作者统计
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn