基本信息
浏览量:55204

个人简介
Geoffrey Hinton designs machine learning algorithms. His aim is to discover a learning procedure that is efficient at finding complex structure in large, high-dimensional datasets and to show that this is how the brain learns to see. He was one of the researchers who introduced the back-propagation algorithm and the first to use backpropagation for learning word embeddings. His other contributions to neural network research include Boltzmann machines, distributed representations, time-delay neural nets, mixtures of experts, variational learning, products of experts and deep belief nets.
研究兴趣
论文共 663 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
引用76浏览0EI引用
76
0
ICLR 2023 (2022)
引用1浏览0引用
1
0
Shekoofeh Azizi, Laura Culp,Jan Freyberg,Basil Mustafa, Sebastien Baur,Simon Kornblith, Ting Chen,Patricia MacWilliams, S. Sara Mahdavi,Ellery Wulczyn, Boris Babenko,Megan Wilson,
arxiv(2022)
引用9浏览0引用
9
0
ICLR 2023 (2022)
引用0浏览0EI引用
0
0
arxiv(2022)
引用0浏览0引用
0
0
加载更多
作者统计
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn