基本信息
浏览量:37

个人简介
My latest work on deep learning security draws inspiration from the temporal computation found in spiking neural networks (SNN) to make having secure networks more accessible. State of the art techniques to train deep networks that are robust to adversarial examples - small, crafted perturbations to input images that fool networks with high confidence - are very computationally expensive and often require redundant neural networks and the injection of many additional training examples. Temporal computation promotes decision-making in deep neural networks that is more context driven and makes feature extraction more robust to small adversarial perturbations.
研究兴趣
论文共 9 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
arxiv(2024)
引用0浏览0引用
0
0
CoRR (2024)
引用0浏览0EI引用
0
0
Bokyung Kim, Qijia Huang,Brady Taylor,Qilin Zheng,Jonathan Ku, Nicky Ramos,Eric C. Yeats,Yiran Chen,Hai Helen Li
IEEE Biomedical Circuits and Systems Conferencepp.1-5, (2024)
Lecture Notes in Computer Science Computer Vision – ECCV 2022pp.36-51, (2022)
2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS) (2022)
International Conference on Machine Learningpp.11953-11963, (2021)
引用24浏览0EI引用
24
0
作者统计
#Papers: 9
#Citation: 44
H-Index: 3
G-Index: 5
Sociability: 3
Diversity: 1
Activity: 11
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn