基本信息
浏览量:614

个人简介
My principal research interests lie in developing effective statistical models and efficient algorithms for learning from a massive volume of complex, structured, uncertain and high-dimensional data.
Articularly, I am focusing on core machine learning methodology for large-scale structured data, including,
Large-scale nonparametric machine learning: develop efficient algorithms for machine learning methods, especially nonparametric methods, to handle hundreds of millions of data.
Learning with complex distributions, structures, and dynamics:
Reinforcement learning: design effective algorithms for exploiting the recursive structure in the dynamics.
Structured input and output: build effective models for capturing the structures information in input and output, e.g., binaries, sequences, trees, and graphs.
Articularly, I am focusing on core machine learning methodology for large-scale structured data, including,
Large-scale nonparametric machine learning: develop efficient algorithms for machine learning methods, especially nonparametric methods, to handle hundreds of millions of data.
Learning with complex distributions, structures, and dynamics:
Reinforcement learning: design effective algorithms for exploiting the recursive structure in the dynamics.
Structured input and output: build effective models for capturing the structures information in input and output, e.g., binaries, sequences, trees, and graphs.
研究兴趣
论文共 151 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
UAIpp.2477-2487, (2023)
引用0浏览0EI引用
0
0
arxiv(2023)
引用0浏览0EI引用
0
0
ICML 2023pp.24325-24360, (2023)
引用0浏览0EI引用
0
0
ICLR 2023 (2023)
引用0浏览0引用
0
0
arxiv(2023)
引用0浏览0EI引用
0
0
CoRR (2023)
引用1浏览0EI引用
1
0
Yilun Du,Mengjiao Yang,Bo Dai,Hanjun Dai,Ofir Nachum, Joshua B. Tenenbaum,Dale Schuurmans,Pieter Abbeel
arxiv(2023)
引用0浏览0引用
0
0
ICLR 2023 (2023)
引用0浏览0EI引用
0
0
CoRR (2023)
引用0浏览0EI引用
0
0
加载更多
作者统计
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn