基本信息
浏览量:9590

个人简介
My primary research interest covers the following areas:
Deep Learning (yes, everyone works on this now). What interests me particularly are algorithms for state updates, invariances and statistical testing.
Scalability of algorithms. This means pushing algorithms to internet scale, distributing them on many (faulty) machines, showing convergence, and modifying models to fit these requirements. For instance, randomized techniques are quite promising in this context. In other words, I'm interested in big data.
Kernels methods are quite an effective means of making linear methods nonlinear and nonparametric. My research interests include support vector Machines, gaussian processes, and conditional random fields. Kernels are very useful also for the representation of distributions, that is two-sample tests, independence tests and many applications to unsupervised learning.
Statistical modeling, primarily with Bayesian Nonparametrics is a great way of addressing many modeling problems. Quite often, the techniques overlap with kernel methods and scalability in rather delightful ways.
Applications, primarily in terms of user modeling, document analysis, temporal models, and modeling data at scale is a great source of inspiration. That is, how can we find principled techniques to solve the problem, what are the underlying concepts, how can we solve things automatically.
Deep Learning (yes, everyone works on this now). What interests me particularly are algorithms for state updates, invariances and statistical testing.
Scalability of algorithms. This means pushing algorithms to internet scale, distributing them on many (faulty) machines, showing convergence, and modifying models to fit these requirements. For instance, randomized techniques are quite promising in this context. In other words, I'm interested in big data.
Kernels methods are quite an effective means of making linear methods nonlinear and nonparametric. My research interests include support vector Machines, gaussian processes, and conditional random fields. Kernels are very useful also for the representation of distributions, that is two-sample tests, independence tests and many applications to unsupervised learning.
Statistical modeling, primarily with Bayesian Nonparametrics is a great way of addressing many modeling problems. Quite often, the techniques overlap with kernel methods and scalability in rather delightful ways.
Applications, primarily in terms of user modeling, document analysis, temporal models, and modeling data at scale is a great source of inspiration. That is, how can we find principled techniques to solve the problem, what are the underlying concepts, how can we solve things automatically.
研究兴趣
论文共 458 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
ICLR 2023 (2023)
引用9浏览0EI引用
9
0
arxiv(2023)
引用2浏览0EI引用
2
0
arxiv(2023)
引用0浏览0引用
0
0
加载更多
作者统计
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn